Projection Envelope
   HOME
*





Projection Envelope
In the branch of abstract mathematics called category theory, a projective cover of an object ''X'' is in a sense the best approximation of ''X'' by a projective object ''P''. Projective covers are the dual of injective envelopes. Definition Let \mathcal be a category and ''X'' an object in \mathcal. A projective cover is a pair (''P'',''p''), with ''P'' a projective object in \mathcal and ''p'' a superfluous epimorphism in Hom(''P'', ''X''). If ''R'' is a ring, then in the category of ''R''-modules, a superfluous epimorphism is then an epimorphism p : P \to X such that the kernel of ''p'' is a superfluous submodule of ''P''. Properties Projective covers and their superfluous epimorphisms, when they exist, are unique up to isomorphism. The isomorphism need not be unique, however, since the projective property is not a full fledged universal property. The main effect of ''p'' having a superfluous kernel is the following: if ''N'' is any proper submodule of ''P'', then p(N) \ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Resolution
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of objects of an abelian category), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object. Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has free resolutions, projective resolut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Top (algebra)
In the context of a module ''M'' over a ring ''R'', the top of ''M'' is the largest semisimple quotient module of ''M'' if it exists. For finite-dimensional ''k''-algebras (''k'' a field) R, if rad(''M'') denotes the intersection of all proper maximal submodules of ''M'' (the radical of the module), then the top of ''M'' is ''M''/rad(''M''). In the case of local rings with maximal ideal ''P'', the top of ''M'' is ''M''/''PM''. In general if ''R'' is a semilocal ring (=semi-artinian ring), that is, if ''R''/Rad(''R'') is an Artinian ring, where Rad(''R'') is the Jacobson radical of ''R'', then ''M''/rad(''M'') is a semisimple module and is the top of ''M''. This includes the cases of local rings and finite dimensional algebras over fields. See also * Projective cover *Radical of a module *Socle (mathematics) In mathematics, the term socle has several related meanings. Socle of a group In the context of group theory, the socle of a group ''G'', denoted soc(''G''), is the subgro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simple Module
In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every cyclic submodule generated by a element of ''M'' equals ''M''. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory. In this article, all modules will be assumed to be right unital modules over a ring ''R''. Examples Z-modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order. If ''I'' is a right ideal of ''R'', then ''I'' is simple as a right module if and only if ''I'' is a minimal non-zero right ideal: If ''M'' is a non-zero proper submodule of ''I'', then it is also a right ideal, so ''I'' is not minimal. Conversely, if ''I'' is not minimal, then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idempotent (ring Theory)
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element ''a'' such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for any positive integer ''n''. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. Examples Quotients of Z One may consider the ring of integers modulo ''n'' where ''n'' is squarefree. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo ''p'' where ''p'' is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be 0 and 1. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semiperfect Ring
In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book. A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric. Perfect ring Definitions The following equivalent definitions of a left perfect ring ''R'' are found in Aderson and Fuller: * Every left ''R'' module has a projective cover. * ''R''/J(''R'') is semisimple and J(''R'') is left T-nilpotent (that is, for every infinite sequence of elements of J(''R'') there is an ''n'' such that the product of first ''n'' terms are zero), where J(''R'') is the Jacobson radical of ''R''. * (Bass' Theorem P) ''R'' satisfies the descending chain condition on principal ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Ring
In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book. A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric. Perfect ring Definitions The following equivalent definitions of a left perfect ring ''R'' are found in Aderson and Fuller: * Every left ''R'' module has a projective cover. * ''R''/J(''R'') is semisimple and J(''R'') is left T-nilpotent (that is, for every infinite sequence of elements of J(''R'') there is an ''n'' such that the product of first ''n'' terms are zero), where J(''R'') is the Jacobson radical of ''R''. * (Bass' Theorem P) ''R'' satisfies the descending chain condition on principal rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]