In the area of
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
known as
ring theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their re ...
, a left perfect ring is a type of
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
in which all left
modules
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a sy ...
have
projective cover In the branch of abstract mathematics called category theory, a projective cover of an object ''X'' is in a sense the best approximation of ''X'' by a projective object ''P''. Projective covers are the dual of injective envelopes.
Definition
L ...
s. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book.
A semiperfect ring is a ring over which every
finitely generated left module has a projective cover. This property is left-right symmetric.
Perfect ring
Definitions
The following equivalent definitions of a left perfect ring ''R'' are found in Aderson and Fuller:
* Every left ''R'' module has a projective cover.
* ''R''/J(''R'') is
semisimple
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
and J(''R'') is left T-nilpotent (that is, for every infinite sequence of elements of J(''R'') there is an ''n'' such that the product of first ''n'' terms are zero), where J(''R'') is the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
of ''R''.
* (Bass' Theorem P) ''R'' satisfies the
descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These con ...
on principal right ideals. (There is no mistake; this condition on ''right'' principal ideals is equivalent to the ring being ''left'' perfect.)
* Every
flat
Flat or flats may refer to:
Architecture
* Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries
Arts and entertainment
* Flat (music), a symbol () which denotes a lower pitch
* Flat (soldier), ...
left ''R''-module is
projective.
* ''R''/J(''R'') is semisimple and every non-zero left ''R'' module contains a
maximal submodule
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals cont ...
.
* ''R'' contains no infinite orthogonal set of
idempotent
Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence ...
s, and every non-zero right ''R'' module contains a minimal submodule.
Examples
* Right or left
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are na ...
s, and
semiprimary rings are known to be right-and-left perfect.
* The following is an example (due to Bass) of a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic num ...
which is right but not left perfect. Let ''F'' be a field, and consider a certain ring of
infinite matrices over ''F''.
:Take the set of infinite matrices with entries indexed by
×
, and which have only finitely many nonzero entries, all of them above the diagonal, and denote this set by
. Also take the matrix
with all 1's on the diagonal, and form the set
:
:It can be shown that ''R'' is a ring with identity, whose
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
is ''J''. Furthermore ''R''/''J'' is a field, so that ''R'' is local, and ''R'' is right but not left perfect.
Properties
For a left perfect ring ''R'':
* From the equivalences above, every left ''R'' module has a maximal submodule and a projective cover, and the flat left ''R'' modules coincide with the projective left modules.
* An analogue of the
Baer's criterion holds for projective modules.
Semiperfect ring
Definition
Let ''R'' be ring. Then ''R'' is semiperfect if any of the following equivalent conditions hold:
* ''R''/J(''R'') is
semisimple
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
and
idempotent
Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence ...
s lift modulo J(''R''), where J(''R'') is the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
of ''R''.
* ''R'' has a complete orthogonal set ''e''
1, ..., ''e''
''n'' of idempotents with each ''e''
''i'' ''R e''
''i'' a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic num ...
.
* Every
simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by Johnn ...
left (right)
''R''-module has a
projective cover In the branch of abstract mathematics called category theory, a projective cover of an object ''X'' is in a sense the best approximation of ''X'' by a projective object ''P''. Projective covers are the dual of injective envelopes.
Definition
L ...
.
* Every
finitely generated left (right) ''R''-module has a projective cover.
* The category of finitely generated projective
-modules is
Krull-Schmidt.
Examples
Examples of semiperfect rings include:
* Left (right) perfect rings.
*
Local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic num ...
s.
*
Kaplansky's theorem on projective modules In abstract algebra, Kaplansky's theorem on projective modules, first proven by Irving Kaplansky, states that a projective module over a local ring is free; where a not-necessary-commutative ring is called ''local'' if for each element ''x'', eith ...
* Left (right)
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are na ...
s.
*
Finite dimensional
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to dis ...
''k''-algebras.
Properties
Since a ring ''R'' is semiperfect iff every
simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by Johnn ...
left
''R''-module has a projective cover, every ring
Morita equivalent
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like ''R'', ''S'' are Morita equivalent (denoted by R\approx S) if their categories of modules ...
to a semiperfect ring is also semiperfect.
Citations
References
*
*
*
{{refend
Ring theory