HOME





Simple Module
In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every cyclic submodule generated by a element of ''M'' equals ''M''. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory. In this article, all modules will be assumed to be right unital modules over a ring ''R''. Examples Z-modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order. If ''I'' is a right ideal of ''R'', then ''I'' is simple as a right module if and only if ''I'' is a minimal non-zero right ideal: If ''M'' is a non-zero proper submodule of ''I'', then it is also a right ideal, so ''I'' is not minimal. Conversely, if ''I'' is not mini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Homomorphism
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if ''M'' and ''N'' are left modules over a ring ''R'', then a function f: M \to N is called an ''R''-''module homomorphism'' or an ''R''-''linear map'' if for any ''x'', ''y'' in ''M'' and ''r'' in ''R'', :f(x + y) = f(x) + f(y), :f(rx) = rf(x). In other words, ''f'' is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If ''M'', ''N'' are right ''R''-modules, then the second condition is replaced with :f(xr) = f(x)r. The preimage of the zero element under ''f'' is called the kernel of ''f''. The set of all module homomorphisms from ''M'' to ''N'' is denoted by \operatorname_R(M, N). It is an abelian group (under pointwise addition) but is not necessarily a module unless ''R'' is commutative. The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Homomorphism
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if ''M'' and ''N'' are left modules over a ring ''R'', then a function f: M \to N is called an ''R''-''module homomorphism'' or an ''R''-''linear map'' if for any ''x'', ''y'' in ''M'' and ''r'' in ''R'', :f(x + y) = f(x) + f(y), :f(rx) = rf(x). In other words, ''f'' is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If ''M'', ''N'' are right ''R''-modules, then the second condition is replaced with :f(xr) = f(x)r. The preimage of the zero element under ''f'' is called the kernel of ''f''. The set of all module homomorphisms from ''M'' to ''N'' is denoted by \operatorname_R(M, N). It is an abelian group (under pointwise addition) but is not necessarily a module unless ''R'' is commutative. The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (algebra)
In algebra, the kernel of a homomorphism is the relation describing how elements in the domain of the homomorphism become related in the image. A homomorphism is a function that preserves the underlying algebraic structure in the domain to its image. When the algebraic structures involved have an underlying group structure, the kernel is taken to be the preimage of the group's identity element in the image, that is, it consists of the elements of the domain mapping to the image's identity. For example, the map that sends every integer to its parity (that is, 0 if the number is even, 1 if the number is odd) would be a homomorphism to the integers modulo 2, and its respective kernel would be the even integers which all have 0 as its parity. The kernel of a homomorphism of group-like structures will only contain the identity if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quotient Module
In algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups by the fact that in the latter cases, the subspace that is used for defining the quotient is not of the same nature as the ambient space (that is, a quotient ring is the quotient of a ring by an ideal, not a subring, and a quotient group is the quotient of a group by a normal subgroup, not by a general subgroup). Given a module over a ring , and a submodule of , the quotient space is defined by the equivalence relation : a \sim b if and only if b - a \in B, for any in . The elements of are the equivalence classes = a+B = \. The function \pi: A \to A/B sending in to its equivalence class is called the '' quotient map'' or the ''projection map'', and is a module homomorphism. The addition operation on is defined for two equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preimage
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each element of a given subset A of its domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. The set of maximal ideals of a unital commutative ring ''R'', typically equipped with the Zariski topology, is known as the maximal spectrum of ''R'' and is variously denoted m-Spec ''R'', Specm ''R'', MaxSpec ''R'', or Spm ''R''. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one-sided maximal ideal ''A'' is not necessarily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Module
In algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups by the fact that in the latter cases, the subspace that is used for defining the quotient is not of the same nature as the ambient space (that is, a quotient ring is the quotient of a ring by an ideal, not a subring, and a quotient group is the quotient of a group by a normal subgroup, not by a general subgroup). Given a module over a ring , and a submodule of , the quotient space is defined by the equivalence relation : a \sim b if and only if b - a \in B, for any in . The elements of are the equivalence classes = a+B = \. The function \pi: A \to A/B sending in to its equivalence class is called the '' quotient map'' or the ''projection map'', and is a module homomorphism. The addition operation on is defined for two equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]