In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, more specifically in
ring theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their re ...
, a maximal ideal is an
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
that is
maximal (with respect to
set inclusion
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
) amongst all ''proper'' ideals.
In other words, ''I'' is a maximal ideal of a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
''R'' if there are no other ideals contained between ''I'' and ''R''.
Maximal ideals are important because the
quotients of rings by maximal ideals are
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
The center of a simple ...
s, and in the special case of
unital commutative rings they are also
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
s.
In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the
poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a
simple module In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every cy ...
over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic n ...
, and the maximal right ideal is also the unique maximal left and unique maximal two-sided ideal of the ring, and is in fact the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition y ...
J(''R'').
It is possible for a ring to have a unique maximal two-sided ideal and yet lack unique maximal one sided ideals: for example, in the ring of 2 by 2
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
over a field, the
zero ideal
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.
Additive identities
An additive identi ...
is a maximal two-sided ideal, but there are many maximal right ideals.
Definition
There are other equivalent ways of expressing the definition of maximal one-sided and maximal two-sided ideals. Given a ring ''R'' and a proper ideal ''I'' of ''R'' (that is ''I'' ≠ ''R''), ''I'' is a maximal ideal of ''R'' if any of the following equivalent conditions hold:
* There exists no other proper ideal ''J'' of ''R'' so that ''I'' ⊊ ''J''.
* For any ideal ''J'' with ''I'' ⊆ ''J'', either ''J'' = ''I'' or ''J'' = ''R''.
* The quotient ring ''R''/''I'' is a simple ring.
There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal ''A'' of a ring ''R'', the following conditions are equivalent to ''A'' being a maximal right ideal of ''R'':
* There exists no other proper right ideal ''B'' of ''R'' so that ''A'' ⊊ ''B''.
* For any right ideal ''B'' with ''A'' ⊆ ''B'', either ''B'' = ''A'' or ''B'' = ''R''.
* The quotient module ''R''/''A'' is a simple right ''R''-module.
Maximal right/left/two-sided ideals are the
dual notion to that of
minimal ideal In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring ''R'' is a nonzero right ideal which contains no other nonzero right ideal. Likewise, a minimal left ideal is a nonzero left ideal of ''R'' containing no other n ...
s.
Examples
* If F is a field, then the only maximal ideal is .
* In the ring Z of integers, the maximal ideals are the
principal ideal
In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
s generated by a prime number.
* More generally, all nonzero
prime ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
s are maximal in a
principal ideal domain.
* The ideal
is a maximal ideal in ring
. Generally, the maximal ideals of
are of the form
where
is a prime number and
is a polynomial in
which is irreducible modulo
.
* Every prime ideal is a maximal ideal in a Boolean ring, i.e., a ring consisting of only idempotent elements. In fact, every prime ideal is maximal in a commutative ring
whenever there exists an integer
such that
for any
.
* The maximal ideals of the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...