Equivariant Topology
   HOME
*





Equivariant Topology
In mathematics, equivariant topology is the study of topological spaces that possess certain symmetries. In studying topological spaces, one often considers continuous maps f: X \to Y, and while equivariant topology also considers such maps, there is the additional constraint that each map "respects symmetry" in both its domain and target space. The notion of symmetry is usually captured by considering a group action of a group G on X and Y and requiring that f is equivariant under this action, so that f(g\cdot x) = g \cdot f(x) for all x \in X, a property usually denoted by f: X \to_ Y. Heuristically speaking, standard topology views two spaces as equivalent "up to deformation," while equivariant topology considers spaces equivalent up to deformation so long as it pays attention to any symmetry possessed by both spaces. A famous theorem of equivariant topology is the Borsuk–Ulam theorem, which asserts that every \mathbf_2-equivariant map f: S^n \to \mathbb R^n necessarily vanis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Cohomology
In mathematics, equivariant cohomology (or ''Borel cohomology'') is a cohomology theory from algebraic topology which applies to topological spaces with a ''group action''. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X with action of a topological group G is defined as the ordinary cohomology ring with coefficient ring \Lambda of the homotopy quotient EG \times_G X: :H_G^*(X; \Lambda) = H^*(EG \times_G X; \Lambda). If G is the trivial group, this is the ordinary cohomology ring of X, whereas if X is contractible, it reduces to the cohomology ring of the classifying space BG (that is, the group cohomology of G when ''G'' is finite.) If ''G'' acts freely on ''X'', then the canonical map EG \times_G X \to X/G is a homotopy equivalence and so one gets: H_G^*(X; \Lambda) = H^*(X/G; \Lambda). Definitions It is also possible to define the equivariant cohomology H_G^*(X;A) of X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Actions (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


G-spectrum
In algebraic topology, a G-spectrum is a spectrum with an action of a (finite) group. Let ''X'' be a spectrum with an action of a finite group ''G''. The important notion is that of the homotopy fixed point set X^. There is always :X^G \to X^, a map from the fixed point spectrum to a homotopy fixed point spectrum (because, by definition, X^ is the mapping spectrum F(BG_+, X)^G.) Example: \mathbb/2 acts on the complex ''K''-theory ''KU'' by taking the conjugate bundle of a complex vector bundle. Then KU^ = KO, the real ''K''-theory. The cofiber of X_ \to X^ is called the Tate spectrum of ''X''. ''G''-Galois extension in the sense of Rognes This notion is due to J. Rognes . Let ''A'' be an E∞-ring with an action of a finite group ''G'' and ''B'' = ''A''''hG'' its invariant subring. Then ''B'' → ''A'' (the map of ''B''-algebras in E∞-sense) is said to be a ''G-Galois extension'' if the natural map :A \otimes_B A \to \prod_ A (which generalizes x \otimes y \mapsto (g(x) y) i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Stable Homotopy Theory
In mathematics, more specifically in topology, the equivariant stable homotopy theory is a subfield of equivariant topology that studies a spectrum with group action instead of a space with group action, as in stable homotopy theory. The field has become more active recently because of its connection to algebraic K-theory. See also * Equivariant K-theory *G-spectrum In algebraic topology, a G-spectrum is a spectrum with an action of a (finite) group. Let ''X'' be a spectrum with an action of a finite group ''G''. The important notion is that of the homotopy fixed point set X^. There is always :X^G \to X^, a ma ... (spectrum with an action of an (appropriate) group ''G'') References External linksCreating Equivariant Stable Homotopy Theory Homotopy theory {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Even And Odd Functions
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy each condition: the function f(x) = x^n is an even function if ''n'' is an even integer, and it is an odd function if ''n'' is an odd integer. Definition and examples Evenness and oddness are generally considered for real functions, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose domain and codomain both have a notion of additive inverse. This includes abelian groups, all rings, all fields, and all vector spaces. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on. The given e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stiefel–Whitney Class
In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to ''n'', where ''n'' is the rank of the vector bundle. If the Stiefel–Whitney class of index ''i'' is nonzero, then there cannot exist (n-i+1) everywhere linearly independent sections of the vector bundle. A nonzero ''n''th Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, S^1 \times\R, is zero. The Stiefel–Whitney class was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object. Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology. History Although polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century. Early topics studie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ham Sandwich Theorem
In mathematical measure theory, for every positive integer the ham sandwich theorem states that given measurable "objects" in -dimensional Euclidean space, it is possible to divide each one of them in half (with respect to their measure, e.g. volume) with a single -dimensional hyperplane. This is even possible if the objects overlap. It was proposed by Hugo Steinhaus and proved by Stefan Banach (explicitly in dimension 3, without taking the trouble to state the theorem in the -dimensional case), and also years later called the Stone–Tukey theorem after Arthur H. Stone and John Tukey. Naming The ham sandwich theorem takes its name from the case when and the three objects to be bisected are the ingredients of a ham sandwich. Sources differ on whether these three ingredients are two slices of bread and a piece of ham , bread and cheese and ham , or bread and butter and ham . In two dimensions, the theorem is known as the pancake theorem to refer to the flat nature of the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]