Equivariant Cohomology
   HOME
*





Equivariant Cohomology
In mathematics, equivariant cohomology (or ''Borel cohomology'') is a cohomology theory from algebraic topology which applies to topological spaces with a ''group action''. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X with action of a topological group G is defined as the ordinary cohomology ring with coefficient ring \Lambda of the homotopy quotient EG \times_G X: :H_G^*(X; \Lambda) = H^*(EG \times_G X; \Lambda). If G is the trivial group, this is the ordinary cohomology ring of X, whereas if X is contractible, it reduces to the cohomology ring of the classifying space BG (that is, the group cohomology of G when ''G'' is finite.) If ''G'' acts freely on ''X'', then the canonical map EG \times_G X \to X/G is a homotopy equivalence and so one gets: H_G^*(X; \Lambda) = H^*(X/G; \Lambda). Definitions It is also possible to define the equivariant cohomology H_G^*(X;A) of X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbit Space
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion. For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Todd Function
Todd or Todds may refer to: Places ;Australia: * Todd River, an ephemeral river ;United States: * Todd Valley, California, also known as Todd, an unincorporated community * Todd, Missouri, a ghost town * Todd, North Carolina, an unincorporated community * Todd County, Kentucky * Todd County, Minnesota * Todd County, South Dakota * Todd Fork, a river in Ohio * Todd Township, Minnesota * Todd Township, Fulton County, Pennsylvania * Todd Township, Huntingdon County, Pennsylvania * Todds, Ohio, an unincorporated community People * Todd (given name) * Todd (surname) Arts and entertainment * Todd (album), ''Todd'' (album), a 1974 album by Todd Rundgren * Todd (Cars), Todd (''Cars''), a character in ''Cars'' * Todd (Stargate), Todd (''Stargate''), a recurring character in the series ''Stargate Atlantis'' * The Todd (Scrubs), The Todd (''Scrubs''), a character on ''Scrubs'' Other uses * Todd (elm cultivar) * Todd class, a characteristic class in algebraic topology * Todd-AO, a compa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Vector Bundle
In mathematics, given an action \sigma: G \times_S X \to X of a group scheme ''G'' on a scheme ''X'' over a base scheme ''S'', an equivariant sheaf ''F'' on ''X'' is a sheaf of \mathcal_X-modules together with the isomorphism of \mathcal_-modules :\phi: \sigma^* F \xrightarrow p_2^*F   that satisfies the cocycle condition: writing ''m'' for multiplication, :p_^* \phi \circ (1_G \times \sigma)^* \phi = (m \times 1_X)^* \phi. Notes on the definition On the stalk level, the cocycle condition says that the isomorphism F_ \simeq F_x is the same as the composition F_ \simeq F_ \simeq F_x; i.e., the associativity of the group action. The condition that the unit of the group acts as the identity is also a consequence: apply (e \times e \times 1)^*, e: S \to G to both sides to get (e \times 1)^* \phi \circ (e \times 1)^* \phi = (e \times 1)^* \phi and so (e \times 1)^* \phi is the identity. Note that \phi is an additional data; it is "a lift" of the action of ''G'' on ''X'' to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Type
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Stack Of Principal Bundles
In algebraic geometry, given a smooth projective curve ''X'' over a finite field \mathbf_q and a smooth affine group scheme ''G'' over it, the moduli stack of principal bundles over ''X'', denoted by \operatorname_G(X), is an algebraic stack given by: for any \mathbf_q-algebra ''R'', :\operatorname_G(X)(R) = the category of principal ''G''-bundles over the relative curve X \times_ \operatornameR. In particular, the category of \mathbf_q-points of \operatorname_G(X), that is, \operatorname_G(X)(\mathbf_q), is the category of ''G''-bundles over ''X''. Similarly, \operatorname_G(X) can also be defined when the curve ''X'' is over the field of complex numbers. Roughly, in the complex case, one can define \operatorname_G(X) as the quotient stack of the space of holomorphic connections on ''X'' by the gauge group. Replacing the quotient stack (which is not a topological space) by a homotopy quotient (which is a topological space) gives the homotopy type of \operatorname_G(X). In the fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Group
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the '' symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-connected
In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of ''n''-connectedness generalizes the concepts of path-connectedness and simple connectedness. An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is ''n''-connected (or ''n''-simple connected) if its first ''n'' homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is ''n''-connected if it is an isomorphism "up to dimension ''n,'' in homotopy". Definition using holes All definitions below consider a topological space ''X''. A hole in ''X'' is, informally, a thing that prevents some suitably-placed sphere from continuously shrinking to a point., Section 4.3 Equivalently, it is a sphere that cannot be continuously extended to a ball. Formally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]