In
mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
measure theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
, for every positive integer the ham sandwich theorem states that given
measurable
In mathematics, the concept of a measure is a generalization and formalization of Geometry#Length, area, and volume, geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly ...
"objects" in -
dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
al
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, it is possible to divide each one of them in half (with respect to their
measure
Measure may refer to:
* Measurement, the assignment of a number to a characteristic of an object or event
Law
* Ballot measure, proposed legislation in the United States
* Church of England Measure, legislation of the Church of England
* Mea ...
, e.g. volume) with a single -dimensional
hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
. This is even possible if the objects overlap.
It was proposed by
Hugo Steinhaus
Hugo Dyonizy Steinhaus ( ; ; January 14, 1887 – February 25, 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Unive ...
and proved by
Stefan Banach
Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an original ...
(explicitly in dimension 3, without taking the trouble to state the theorem in the -dimensional case), and also years later called the Stone–Tukey theorem after
Arthur H. Stone and
John Tukey
John Wilder Tukey (; June 16, 1915 – July 26, 2000) was an American mathematician and statistician, best known for the development of the fast Fourier Transform (FFT) algorithm and box plot. The Tukey range test, the Tukey lambda distributi ...
.
Naming
The ham sandwich theorem takes its name from the case when and the three objects to be bisected are the ingredients of a
ham
Ham is pork from a leg cut of pork, cut that has been food preservation, preserved by wet or dry Curing (food preservation), curing, with or without smoking (cooking), smoking."Bacon: Bacon and Ham Curing" in ''Chambers's Encyclopædia''. Lo ...
sandwich
A sandwich is a food typically consisting of vegetables, sliced cheese or meat, placed on or between slices of bread, or more generally any dish wherein bread serves as a container or wrapper for another food type. The sandwich began as a po ...
. Sources differ on whether these three ingredients are two slices of bread and a piece of ham , bread and cheese and ham , or bread and butter and ham . In two dimensions, the theorem is known as the pancake theorem to refer to the flat nature of the two objects to be bisected by a line .
History
According to , the earliest known paper about the ham sandwich theorem, specifically the case of bisecting three solids with a plane, is a 1938 note in a Polish mathematics journal . Beyer and Zardecki's paper includes a translation of this note, which attributes the posing of the problem to
Hugo Steinhaus
Hugo Dyonizy Steinhaus ( ; ; January 14, 1887 – February 25, 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Unive ...
, and credits
Stefan Banach
Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an original ...
as the first to solve the problem, by a reduction to the
Borsuk–Ulam theorem
In mathematics, the Borsuk–Ulam theorem states that every continuous function from an ''n''-sphere into Euclidean ''n''-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are ...
. The note poses the problem in two ways: first, formally, as "Is it always possible to bisect three solids, arbitrarily located, with the aid of an appropriate plane?" and second, informally, as "Can we place a piece of ham under a meat cutter so that meat, bone, and fat are cut in halves?" The note then offers a proof of the theorem.
A more modern reference is , which is the basis of the name "Stone–Tukey theorem". This paper proves the -dimensional version of the theorem in a more general setting involving measures. The paper attributes the case to
Stanislaw Ulam
Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapon ...
, based on information from a referee; but claim that this is incorrect, given the note mentioned above, although "Ulam did make a fundamental contribution in proposing" the
Borsuk–Ulam theorem
In mathematics, the Borsuk–Ulam theorem states that every continuous function from an ''n''-sphere into Euclidean ''n''-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are ...
.
Two-dimensional variant: proof using a rotating-knife
The two-dimensional variant of the theorem (also known as the pancake theorem) can be proved by an argument which appears in the
fair cake-cutting
Fair cake-cutting is a kind of fair division problem. The problem involves a ''heterogeneous'' resource, such as a cake with different toppings, that is assumed to be ''divisible'' – it is possible to cut arbitrarily small pieces of it without ...
literature (see e.g.
Robertson–Webb rotating-knife procedure The Robertson–Webb rotating-knife procedure is a procedure for envy-free cake-cutting of a two-dimensional cake among three partners. It makes only two cuts, so each partner receives a single connected piece.
Its main advantage over the earlier S ...
).
For each angle