Moment Curve
   HOME
*





Moment Curve
In geometry, the moment curve is an algebraic curve in ''d''-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form :\left( x, x^2, x^3, \dots, x^d \right). In the Euclidean plane, the moment curve is a parabola, and in three-dimensional space it is a twisted cubic. Its closure in projective space is the rational normal curve. Moment curves have been used for several applications in discrete geometry including cyclic polytopes, the no-three-in-line problem, and a geometric proof of the chromatic number of Kneser graphs. Properties Every hyperplane intersects the moment curve in a finite set of at most ''d'' points. If a hyperplane intersects the curve in exactly ''d'' points, then the curve crosses the hyperplane at each intersection point. Thus, every finite point set on the moment curve is in general linear position. Applications The convex hull of any finite set of points on the moment curve is a cyclic polytope. Cyclic polytopes have the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Position
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident). One also says "two generic lines intersect in a point", which is formalized by the notion of a generic point. Similarly, three generic points in the plane are not collinear; if three points are collinear (even stronger, if two coincide), this is a degenerate case. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general theorems or giving precise statements thereof, and when writing computer programs (see '' generic compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algorithmica
''Algorithmica'' received the highest possible ranking “A*”. External links Springer information
Computer science journals Springer Science+Business Media academic journals Monthly journals Publications established in 1986 English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered around discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He firmly believed mathematics to be a social activity, living an itinerant lifestyle with the sole purpose of writing mathematical papers with other mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Drawing
Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graph (discrete mathematics), graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics. A drawing of a graph or network diagram is a pictorial representation of the vertex (graph theory), vertices and edge (graph theory), edges of a graph. This drawing should not be confused with the graph itself: very different layouts can correspond to the same graph., p. 6. In the abstract, all that matters is which pairs of vertices are connected by edges. In the concrete, however, the arrangement of these vertices and edges within a drawing affects its understandability, usability, fabrication cost, and aesthetics. The problem gets worse if the graph changes over time by adding and deleting edges (dynamic graph drawing) and the goal is to preserve the user's menta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


László Lovász
László Lovász (; born March 9, 1948) is a Hungarian mathematician and professor emeritus at Eötvös Loránd University, best known for his work in combinatorics, for which he was awarded the 2021 Abel Prize jointly with Avi Wigderson. He was the president of the International Mathematical Union from 2007 to 2010 and the president of the Hungarian Academy of Sciences from 2014 to 2020. In graph theory, Lovász's notable contributions include the proofs of Kneser's conjecture and the Lovász local lemma, as well as the formulation of the Erdős–Faber–Lovász conjecture. He is also one of the eponymous authors of the LLL lattice reduction algorithm. Early life and education Lovász was born on March 9, 1948, in Budapest, Hungary. Lovász attended the Fazekas Mihály Gimnázium in Budapest. He won three gold medals (1964–1966) and one silver medal (1963) at the International Mathematical Olympiad. He also participated in a Hungarian game show about math prodigies. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ham Sandwich Theorem
In mathematical measure theory, for every positive integer the ham sandwich theorem states that given measurable "objects" in -dimensional Euclidean space, it is possible to divide each one of them in half (with respect to their measure, e.g. volume) with a single -dimensional hyperplane. This is even possible if the objects overlap. It was proposed by Hugo Steinhaus and proved by Stefan Banach (explicitly in dimension 3, without taking the trouble to state the theorem in the -dimensional case), and also years later called the Stone–Tukey theorem after Arthur H. Stone and John Tukey. Naming The ham sandwich theorem takes its name from the case when and the three objects to be bisected are the ingredients of a ham sandwich. Sources differ on whether these three ingredients are two slices of bread and a piece of ham , bread and cheese and ham , or bread and butter and ham . In two dimensions, the theorem is known as the pancake theorem to refer to the flat nature of the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Delaunay Triangulation
In mathematics and computational geometry, a Delaunay triangulation (also known as a Delone triangulation) for a given set P of discrete points in a general position is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934. For a set of points on the same line there is no Delaunay triangulation (the notion of triangulation is degenerate for this case). For four or more points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: each of the two possible triangulations that split the quadrangle into two triangles satisfies the "Delaunay condition", i.e., the requirement that the circumcircles of all triangles have empty interiors. By considering circumscribed spheres, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neighborly Polytope
In geometry and polyhedral combinatorics, a -neighborly polytope is a convex polytope in which every set of or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a -neighborly polytope (other than a simplex) requires a dimension of or more. A -simplex is -neighborly. A polytope is said to be neighborly, without specifying , if it is -neighborly for . If we exclude simplices, this is the maximum possible : in fact, every polytope that is -neighborly for some is a simplex. In a -neighborly polytope with , every 2-face must be a triangle, and in a -neighborly polytope with , every 3-face must be a tetrahedron. More generally, in any -neighborly polytope, all faces of dimension less than are simplices. The cyclic polytopes formed as the convex hul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edges (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]