HOME
*





Verilog-AMS
Verilog-AMS is a derivative of the Verilog hardware description language that includes analog and mixed-signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems. It extends the event-based simulator loops of Verilog/SystemVerilog/VHDL, by a continuous-time simulator, which solves the differential equations in analog-domain. Both domains are coupled: analog events can trigger digital actions and vice versa. Overview The Verilog-AMS standard was created with the intent of enabling designers of analog and mixed signal systems and integrated circuits to create and use modules that encapsulate high-level behavioral descriptions as well as structural descriptions of systems and components. Verilog-AMS is an industry standard modeling language for mixed signal circuits. It provides both continuous-time and event-driven modeling semantics, and so is suitable for analog, digital, and mixed analog/digital circuits. It is particularly well suited for verif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verilog-A
Verilog-A is an industry standard modeling language for analog circuits. It is the continuous-time subset of Verilog-AMS. A few commercial applications may export MEMS designs in Verilog-A format. History Verilog-A was created out of a need to standardize the Spectre behavioral language in face of competition from VHDL (an IEEE standard), which was absorbing analog capability from other languages (e.g. MAST). Open Verilog International (OVI, the body that originally standardized Verilog) agreed to support the standardization, provided that it was part of a plan to create Verilog-AMS — a single language covering both analog and digital design. Verilog-A was an all-analog subset of Verilog-AMS that was the first phase of the project. There was considerable delay (possibly procrastination) between the first Verilog-A language reference manual and the full Verilog-AMS, and in that time Verilog moved to the IEEE, leaving Verilog-AMS behind at Accellera. The email log from 2000A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verilog
Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic systems. It is most commonly used in the design and verification of digital circuits at the register-transfer level of abstraction. It is also used in the verification of analog circuits and mixed-signal circuits, as well as in the design of genetic circuits. In 2009, the Verilog standard (IEEE 1364-2005) was merged into the SystemVerilog standard, creating IEEE Standard 1800-2009. Since then, Verilog is officially part of the SystemVerilog language. The current version is IEEE standard 1800-2017. Overview Hardware description languages such as Verilog are similar to software programming languages because they include ways of describing the propagation time and signal strengths (sensitivity). There are two types of assignment operators; a blocking assignment (=), and a non-blocking (>>. A generate–endgenerate construct (similar to VHDL's generate–endgenerate) allows Verilog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardware Description Language
In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits. A hardware description language enables a precise, formal description of an electronic circuit that allows for the automated analysis and simulation of an electronic circuit. It also allows for the synthesis of an HDL description into a netlist (a specification of physical electronic components and how they are connected together), which can then be placed and routed to produce the set of masks used to create an integrated circuit. A hardware description language looks much like a programming language such as C or ALGOL; it is a textual description consisting of expressions, statements and control structures. One important difference between most programming languages and HDLs is that HDLs explicitly include the notion of time. HDLs form an integral part of electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Accellera
Accellera Systems Initiative (Accellera) is a standards organization that supports a mix of user and vendor standards and open interfaces development in the area of electronic design automation (EDA) and integrated circuit (IC) design and manufacturing. It is less constrained than the Institute of Electrical and Electronics Engineers (IEEE) and is therefore the starting place for many standards. Once mature and adopted by the broader community, the standards are usually transferred to the IEEE. History In 2000, Accellera was founded from the merger of Open Verilog International (OVI) and VHDL International, the developers of Verilog and VHDL respectively. Both were originally formed nine years earlier in 1991. In June 2009, a merger was announced between Accellera and The SPIRIT Consortium, another major EDA standards organization focused on IP deployment and reuse. The SPIRIT Consortium obtained SystemRDL from the SystemRDL Alliance and then developed IP-XACT. The merger was com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VHDL-AMS
VHDL-AMS is a derivative of the hardware description language VHDL (IEEE standard 1076-1993). It includes analog and mixed-signal extensions (AMS) in order to define the behavior of analog and mixed-signal systems (IEEE 1076.1-1999). The VHDL-AMS standard was created with the intent of enabling designers of analog and mixed signal systems and integrated circuits to create and use modules that encapsulate high-level behavioral descriptions as well as structural descriptions of systems and components.Christen E., Bakalar K.,"VHDL-AMS-a hardware description language for analog and mixed-signal applications",Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on ee also Circuits and Systems II: Express Briefs, IEEE Transactions onVolume 46, Issue 10, Oct. 1999, pp. 1263 - 1272. VHDL-AMS is an industry standard modeling language for mixed signal circuits. It provides both continuous-time and event-driven modeling semantics, and so is suitable for analog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Verilog Procedural Interface
The Verilog Procedural Interface (VPI), originally known as PLI 2.0, is an interface primarily intended for the C programming language. It allows behavioral Verilog code to invoke C functions, and C functions to invoke standard Verilog system tasks. The Verilog Procedural Interface is part of the IEEE 1364 Programming Language Interface standard; the most recent edition of the standard is from 2005. VPI is sometimes also referred to as PLI 2, since it replaces the deprecated Program Language Interface (PLI). While PLI 1 was deprecated in favor of VPI (aka. PLI 2), PLI 1 is still commonly used over VPI due to its much more widely documented tf_put, tf_get function interface that is described in many verilog reference books. Use of C++ C++ is integrable with VPI (PLI 2.0) and PLI 1.0, by using the "extern C/C++" keyword built into C++ compilers. Example As an example, consider the following Verilog code fragment: val = 41; $increment(val); $display("After $increment, val=%d", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital-to-analog Converter
In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function. There are several DAC architectures; the suitability of a DAC for a particular application is determined by figures of merit including: resolution, maximum sampling frequency and others. Digital-to-analog conversion can degrade a signal, so a DAC should be specified that has insignificant errors in terms of the application. DACs are commonly used in music players to convert digital data streams into analog audio signals. They are also used in televisions and mobile phones to convert digital video data into analog video signals. These two applications use DACs at opposite ends of the frequency/resolution trade-off. The audio DAC is a low-frequency, high-resolution type while the video DAC is a high-frequency low- to medium-resolution type. Due to the complexity a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analog-to-digital Converter
In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities. There are several ADC architectures. Due to the complexity and the need for precisely matched components, all but the most specialized ADCs are implemented as integrated circuits (ICs). These typically take the form of metal–oxide–semiconductor (MOS) mixed-signal integrated circuit chips that integrate both analog and digital circuits. A digital-to-analog converter (DAC) performs the reverse function; it converts a digital signa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]