HOME
*





Riemann–Lebesgue Lemma
In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an ''L''1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis. Statement Let f\in L^1(\R^n) be an integrable function, i.e. f\colon\R^n \rightarrow \C is a measurable function such that :\, f\, _ = \int_ , f(x), \mathrmx 0, pick a compactly supported continuous function g such that \, f-g\, _ \leq \varepsilon. Then : \limsup_ , \hat(\xi), \leq \limsup_ \left, \int (f(x)-g(x))\mathrm^ \, \mathrmx\ + \limsup_ \left, \int g(x)\mathrm^ \, \mathrmx\ \leq \varepsilon + 0 = \varepsilon. Because this holds for any \varepsilon > 0, it follows that , \hat(\xi), \to 0 as , \xi, \to\infty . Other versions The Riemann–Lebesgue lemma holds in a variety of other situations. * If f \in L^1 z, \to \infty within the half-plane \mathrm(z) \geq 0. * A version holds for Fourier coefficients ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''period''), the number of components, and their amplitudes and phase parameters. With appropriate choices, one cycle (or ''period'') of the summation can be made to approximate an arbitrary function in that interval (or the entire function if it too is periodic). The number of components is theoretically infinite, in which case the other parameters can be chosen to cause the series to converge to almost any ''well behaved'' periodic function (see Pathological and Dirichlet–Jordan test). The components of a particular function are determined by ''analysis'' techniques described in this article. Sometimes the components are known first, and the unknown function is ''synthesized'' by a Fourier series. Such is the case of a discrete-ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Analysis
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lemmas In Analysis
Lemma may refer to: Language and linguistics * Lemma (morphology), the canonical, dictionary or citation form of a word * Lemma (psycholinguistics), a mental abstraction of a word about to be uttered Science and mathematics * Lemma (botany), a part of a grass plant * Lemma (mathematics), a type of proposition Other uses * ''Lemma'' (album), by John Zorn (2013) * Lemma (logic), an informal contention See also *Analemma, a diagram showing the variation of the position of the Sun in the sky *Dilemma *Lema (other) * Lemmatisation *Neurolemma Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the ne ...
, part of a neuron {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience. The term "harmonics" originated as the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are Multiple (mathematics), integer multiples of one another, as are the frequencies of the Harmonic series (music), harmonics of music notes, but the term has been generalized beyond its original meaning. The classical Fourier transform on R''n'' is still an area of ongoing research, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Salomon Bochner
Salomon Bochner (20 August 1899 – 2 May 1982) was an Austrian mathematician, known for work in mathematical analysis, probability theory and differential geometry. Life He was born into a Jewish family in Podgórze (near Kraków), then Austria-Hungary, now Poland. Fearful of a Russian invasion in Galicia at the beginning of World War I in 1914, his family moved to Germany, seeking greater security. Bochner was educated at a Berlin gymnasium (secondary school), and then at the University of Berlin. There, he was a student of Erhard Schmidt, writing a dissertation involving what would later be called the Bergman kernel. Shortly after this, he left the academy to help his family during the escalating inflation. After returning to mathematical research, he lectured at the University of Munich from 1924 to 1933. His academic career in Germany ended after the Nazis came to power in 1933, and he left for a position at Princeton University. He was a visiting scholar at the Institu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Method Of Stationary Phase
In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to the limit as k \to \infty . This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin. It is closely related to Laplace's method and the method of steepest descent, but Laplace's contribution precedes the others. Basics The main idea of stationary phase methods relies on the cancellation of sinusoids with rapidly varying phase. If many sinusoids have the same phase and they are added together, they will add constructively. If, however, these same sinusoids have phases which change rapidly as the frequency changes, they will add incoherently, varying between constructive and destructive addition at different times. Formula Letting \Sigma denote the set of critical points of the function f (i.e. points where \nabla f =0), under the assumption that g is either compactly supported or has exponential decay, and that all critical p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Steepest Descent
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form :\int_Cf(z)e^\,dz, where ''C'' is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration ''C'' into a new path integration ''C′'' so that the following conditions hold: # ''C′'' passes through one or more zeros of the derivative ''g''′(''z''), # the imaginary part of ''g''(''z'') is constant on ''C′''. The method of steepest descent was first published by , who used it to estimate Bessel functions and pointed out that it occurred in the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Coefficient
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''period''), the number of components, and their amplitudes and phase parameters. With appropriate choices, one cycle (or ''period'') of the summation can be made to approximate an arbitrary function in that interval (or the entire function if it too is periodic). The number of components is theoretically infinite, in which case the other parameters can be chosen to cause the series to converge to almost any ''well behaved'' periodic function (see Pathological and Dirichlet–Jordan test). The components of a particular function are determined by ''analysis'' techniques described in this article. Sometimes the components are known first, and the unknown function is ''synthesized'' by a Fourier series. Such is the case of a discrete-tim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the ''L''1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that : , f_n(x), \le g(x) for all numbers ''n'' in the index set of the sequence and all points x\in S. Then ''f'' is integrable (in the Lebesgue sense) and : \lim_ \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernhard Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Biography Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]