HOME
*





Permutationally Invariant Quantum State Tomography
Permutationally invariant quantum state tomography (PI quantum state tomography) is a method for the partial determination of the state of a quantum system consisting of many subsystems. In general, the number of parameters needed to describe the quantum mechanical state of a system consisting of N subsystems is increasing exponentially with N. For instance, for an N- qubit system, 2^N-2 real parameters are needed to describe the state vector of a pure state, or 2^ -1 real parameters are needed to describe the density matrix of a mixed state. '' Quantum state tomography'' is a method to determine all these parameters from a series of measurements on many independent and identically prepared systems. Thus, in the case of full quantum state tomography, the number of measurements needed scales exponentially with the number of particles or qubits. For large systems, the determination of the entire quantum state is no longer possible in practice and one is interested in methods t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Physics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Optimization
Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard. Convex optimization has applications in a wide range of disciplines, such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, finance, statistics ( optimal experimental design), and structural optimization, where the approximation concept has proven to be efficient. With recent advancements in computing and optimization algorithms, convex programming is nearly as straightforward as linear programming. Definition A convex optimization problem is an optimization problem in which the objective function is a convex function and the feasible set is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cluster State
In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster ''C'' is a connected subset of a ''d''-dimensional lattice, and a cluster state is a pure state of the qubits located on ''C''. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement (via projective measurements) in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a ''d''-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see. Formally, cluster states , \phi_\rangle_ are states which obey the set eigenvalue equations: : K^ =(-1)^ where K^ are the correlation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W State
The W state is an entangled quantum state of three qubits which in the bra-ket notation has the following shape : , \mathrm\rangle = \frac(, 001\rangle + , 010\rangle + , 100\rangle) and which is remarkable for representing a specific type of multipartite entanglement and for occurring in several applications in quantum information theory. Particles prepared in this state reproduce the properties of Bell's theorem, which states that no classical theory of local hidden variables can produce the predictions of quantum mechanics. The state is named after Wolfgang Dür, who first reported the state together with Guifré Vidal Guifré Vidal is a Spanish physicist who is working on quantum many-body physics using analytical and numerical techniques. In particular, he is one of the leading experts of tensor network state implementations such as time-evolving block deci ..., and Ignacio Cirac in 2002. Properties The W state is the representative of one of the two non-bisepara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greenberger–Horne–Zeilinger State
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state (GHZ state) is a certain type of entangled quantum state that involves at least three subsystems (particle states, qubits, or qudits). It was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989. Extremely non-classical properties of the state have been observed. Definition The GHZ state is an entangled quantum state for 3 qubits and its state is :, \mathrm\rangle = \frac. Generalization The generalized GHZ state is an entangled quantum state of subsystems. If each system has dimension d, i.e., the local Hilbert space is isomorphic to \mathbb^d, then the total Hilbert space of partite system is \mathcal_=(\mathbb^d)^. This GHZ state is also named as M-partite qudit GHZ state, it reads :, \mathrm\rangle=\frac\sum_^, i\rangle\otimes\cdots\otimes, i\rangle=\frac(, 0\rangle\otimes\cdots\otimes, 0\rangle+\cdots+, d-1\rangle\otimes\cdots\otimes, d-1\rangle). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Entanglement Witness
In quantum information theory, an entanglement witness is a functional which distinguishes a specific entangled state from separable ones. Entanglement witnesses can be linear or nonlinear functionals of the density matrix. If linear, then they can also be viewed as observables for which the expectation value of the entangled state is strictly outside the range of possible expectation values of any separable state. Details Let a composite quantum system have state space H_A \otimes H_B. A mixed state ''ρ'' is then a trace-class positive operator on the state space which has trace 1. We can view the family of states as a subset of the real Banach space generated by the Hermitian trace-class operators, with the trace norm. A mixed state ''ρ'' is separable if it can be approximated, in the trace norm, by states of the form :\xi = \sum_ ^k p_i \, \rho_i^A \otimes \rho_i^B, where \rho_i^A and \rho_i^B are pure states on the subsystems ''A'' and ''B'' respectively. So t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Definite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degrees Of Freedom
Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or other physical processes are possible. This relates to the philosophical concept to the extent that people may be considered to have as much freedom as they are physically able to exercise. Applications Statistics In statistics, degrees of freedom refers to the number of variables in a statistic calculation that can vary. It can be calculated by subtracting the number of estimated parameters from the total number of values in the sample. For example, a sample variance calculation based on n samples will have n-1 degrees of freedom, because sample variance is calculated using the sample mean as an estimate of the actual mean. Mathematics In mathematics, this notion is formalized as the dimension of a manifold or an algebraic variety. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ultracold Atom
Ultracold atoms are atoms that are maintained at temperatures close to 0 kelvin (absolute zero), typically below several tens of microkelvin (µK). At these temperatures the atom's quantum-mechanical properties become important. To reach such low temperatures, a combination of several techniques typically has to be used. First, atoms are usually trapped and pre-cooled via laser cooling in a magneto-optical trap. To reach the lowest possible temperature, further cooling is performed using evaporative cooling in a magnetic or optical trap. Several Nobel prizes in physics are related to the development of the techniques to manipulate quantum properties of individual atoms (e.g. 1995-1997, 2001, 2005, 2012, 2017). Experiments with ultracold atoms study a variety of phenomena, including quantum phase transitions, Bose–Einstein condensation (BEC), bosonic superfluidity, quantum magnetism, many-body spin dynamics, Efimov states, Bardeen–Cooper–Schrieffer (BCS) superfluidity and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]