HOME

TheInfoList



OR:

In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state (GHZ state) is a certain type of entangled quantum state that involves at least three subsystems (particle states, qubits, or
qudit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s). It was first studied by Daniel Greenberger,
Michael Horne Michael Rex Horne OBE FREng, FRS (29 December 1921 – 6 January 2000) was an English structural engineer, scientist and academic who pioneered the theory of the Plastic Design of Structures. Early life and education Horne was born i ...
and Anton Zeilinger in 1989. Extremely non-classical properties of the state have been observed.


Definition

The GHZ state is an entangled quantum state for 3 qubits and its state is :, \mathrm\rangle = \frac.


Generalization

The generalized GHZ state is an entangled quantum state of subsystems. If each system has dimension d, i.e., the local
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
is isomorphic to \mathbb^d, then the total Hilbert space of partite system is \mathcal_=(\mathbb^d)^. This GHZ state is also named as M-partite qudit GHZ state, it reads :, \mathrm\rangle=\frac\sum_^, i\rangle\otimes\cdots\otimes, i\rangle=\frac(, 0\rangle\otimes\cdots\otimes, 0\rangle+\cdots+, d-1\rangle\otimes\cdots\otimes, d-1\rangle). In the case of each of the subsystems being two-dimensional, that is for ''M''-qubits, it reads :, \mathrm\rangle = \frac. In simple words, it is a quantum superposition of all subsystems being in state 0 with all of them being in state 1 (states 0 and 1 of a single subsystem are fully distinguishable).


Properties

There is no standard measure of multi-partite entanglement because different, not mutually convertible, types of multi-partite entanglement exist. Nonetheless, many measures define the GHZ state to be maximally entangled state. Another important property of the GHZ state is that when we trace over one of the three systems, we get :\operatorname_3\left left(\frac\right)\left(\frac\right) \right= \frac, which is an unentangled mixed state. It has certain two-particle (qubit) correlations, but these are of a classical nature. On the other hand, if we were to measure one of the subsystems in such a way that the measurement distinguishes between the states 0 and 1, we will leave behind either , 00\rangle or , 11\rangle, which are unentangled pure states. This is unlike the W state, which leaves bipartite entanglements even when we measure one of its subsystems. The GHZ state is non-biseparable and is the representative of one of the two non-biseparable classes of 3-qubit states which cannot be transformed (not even probabilistically) into each other by local quantum operations, the other being the W state, , \mathrm\rangle = (, 001\rangle + , 010\rangle + , 100\rangle)/\sqrt. Thus , \mathrm\rangle and , \mathrm\rangle represent two very different kinds of entanglement for three or more particles. The W state is, in a certain sense "less entangled" than the GHZ state; however, that entanglement is, in a sense, more robust against single-particle measurements, in that, for an ''N''-qubit W state, an entangled (''N'' − 1)-qubit state remains after a single-particle measurement. By contrast, certain measurements on the GHZ state collapse it into a mixture or a pure state. The GHZ state leads to striking non-classical correlations (1989). Particles prepared in this state lead to a version of Bell's theorem, which shows the internal inconsistency of the notion of elements-of-reality introduced in the famous Einstein–Podolsky–Rosen article. The first laboratory observation of GHZ correlations was by the group of Anton Zeilinger (1998), who was awarded the (shared) 2022 Nobel Prize in physics for this work. Many more accurate observations followed. The correlations can be utilized in some quantum information tasks. These include multipartner quantum cryptography (1998) and
communication complexity In theoretical computer science, communication complexity studies the amount of communication required to solve a problem when the input to the problem is distributed among two or more parties. The study of communication complexity was first intro ...
tasks (1997, 2004).


Pairwise entanglement

Although a measurement of the third particle of the GHZ state that distinguishes the two states results in an unentangled pair, a measurement along an orthogonal direction can leave behind a maximally entangled
Bell state The Bell states or EPR pairs are specific quantum states of two qubits that represent the simplest (and maximal) examples of quantum entanglement; conceptually, they fall under the study of quantum information science. The Bell states are a fo ...
. This is illustrated below. The 3-qubit GHZ state can be written as :, \mathrm\rangle=\frac\left(, 000\rangle + , 111\rangle\right) = \frac\left(, 00\rangle + , 11\rangle \right) \otimes , +\rangle + \frac\left(, 00\rangle - , 11\rangle\right) \otimes , -\rangle, where the third particle is written as a superposition in the ''X'' basis (as opposed to the ''Z'' basis) as , 0\rangle = (, +\rangle + , -\rangle)/\sqrt and , 1\rangle =( , +\rangle - , -\rangle)/\sqrt. A measurement of the GHZ state along the ''X'' basis for the third particle then yields either , \Phi^+\rangle =(, 00\rangle + , 11\rangle)/\sqrt, if , +\rangle was measured, or , \Phi^-\rangle=(, 00\rangle - , 11\rangle)/\sqrt, if , -\rangle was measured. In the later case, the phase can be rotated by applying a ''Z'' quantum gate to give , \Phi^+\rangle, while in the former case, no additional transformations are applied. In either case, the result of the operations is a maximally entangled Bell state. This example illustrates that, depending on which measurement is made of the GHZ state is more subtle than it first appears: a measurement along an orthogonal direction, followed by a quantum transform that depends on the measurement outcome, can leave behind a maximally entangled state.


Applications

GHZ states are used in several protocols in quantum communication and cryptography, for example, in secret sharing or in the
quantum Byzantine agreement Byzantine fault tolerant protocols are algorithms that are robust to arbitrary types of failures in distributed algorithms. The Byzantine agreement protocol is an essential part of this task. The constant-time quantum version of the Byzantine proto ...
.


See also

* Bell's theorem * Local hidden-variable theory *
NOON state In quantum optics, a NOON state or N00N state is a quantum-mechanical many-body Quantum entanglement, entangled state: : , \psi_\text \rangle = \frac, \, which represents a superposition of ''N'' particles in mode ''a'' with zero particles in ...
* Quantum pseudo-telepathy uses a four-particle entangled state.


References

{{DEFAULTSORT:Greenberger-Horne-Zeilinger state Quantum information theory