HOME
*





Particle Beam Cooling
Particle beam cooling is the process of improving the quality of particle beams produced by particle accelerators, by reducing the emittance. Techniques for particle beam cooling include: * Stochastic cooling * Electron coolingI. Meshkov, Electron Cooling: Status and Perspectives, Physics of Particles and Nuclei, Vol. 25, Issue 6, pp. 631-661, 1994 * Ionization cooling * Laser cooling * Radiation damping Radiation damping in accelerator physics is a way of reducing the beam emittance of a high-velocity charged particle beam by synchrotron radiation. The two main ways of using radiation damping to reduce the emittance of a particle beam are the us ... * Buffer-gas cooling within RF quadrupoles References Accelerator physics {{Accelerator-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Beam
A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics. Sources Charged particles such as electrons, positrons, and protons may be separated from their common surrounding. This can be accomplished by e.g. thermionic emission or arc discharge. The following devices are commonly used as sources for particle beams: * Ion source * Cathode ray tube, or more specifically in one of its parts called electron gun. This is also part of traditional television and computer screens. * Photocathodes may also be built in as a part of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5  TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beam Emittance
In accelerator physics, emittance is a property of a charged particle beam. It refers to the area occupied by the beam in a position-and-momentum phase space. Each particle in a beam can be described by its position and momentum along each of three orthogonal axes, for a total of six position and momentum coordinates. When the position and momentum for a single axis are plotted on a two dimensional graph, the average spread of the coordinates on this plot are the emittance. As such, a beam will have three emittances, one along each axis, which can be described independently. As particle momentum along an axis is usually described as an angle relative to that axis, an area on a position-momentum plot will have dimensions of length × angle (for example, millimeters × milliradian). Emittance is important for analysis of particle beams. As long as the beam is only subjected to conservative forces, Liouville's Theorem shows that emittance is a conserved quantity. If t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Cooling
Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam. The technique was invented and applied at the Intersecting Storage Rings, and later the Super Proton Synchrotron (SPS), at CERN in Geneva, Switzerland, by Simon van der Meer, a physicist from the Netherlands. It was used to collect and cool antiprotons—these particles were injected into the Proton-Antiproton Collider, a modification of the SPS, with counter-rotating protons and collided at a particle physics experiment. For this work, van der Meer was awarded the Nobel Prize in Physics in 1984. He shared this prize with Carlo Rubbia of Italy, who proposed the Proton-Antiproton Collider. This exper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Cooling
Electron cooling is a method to shrink the emittance (size, divergence, and energy spread) of a charged particle beam without removing particles from the beam. Since the number of particles remains unchanged and the space coordinates and their derivatives (angles) are reduced, this means that the phase space occupied by the stored particles is compressed. It is equivalent to reducing the temperature of the beam. See also stochastic cooling. The method was invented by Gersh Budker at INP, Novosibirsk, in 1966 for the purpose of increasing luminosity of hadron colliders. It was first tested in 1974 with 68 MeV protons at NAP-M storage ring at INP. It is used at both operating ion colliders: the Relativistic Heavy Ion Collider and in the Low Energy Ion Ring at CERN. Basically, electron cooling works as follows: * A beam of dense quasi-monoenergetic electrons is produced and merged with the ion beam to be cooled. * The velocity of the electrons is made equal to the average velocity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ionization Cooling
In accelerator physics, ionization cooling is a physical process for reducing the beam emittance of a charged particle beam ("cooling") by passing the particles through some material, reducing their momentum as they ionize atomic electrons in the material. Thus the normalised beam emittance is reduced. By re-accelerating the beam, for example in an RF cavity, the longitudinal momentum may be restored without replacing transverse momentum. Thus overall the angular spread and hence the geometric emittance in the beam will be reduced. Ionization cooling can be spoiled by stochastic physical processes. Multiple Coulomb scattering of muons as well as nuclear scattering of protons and ions can reduce the cooling or even lead to net heating transverse to the direction of beam motion. In addition, energy straggling can cause heating parallel to the direction of beam motion. Muon cooling The primary use of ionization cooling is envisaged to be for cooling of muon beams. This is because ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laser Cooling
Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) absorbs and re-emits a photon (a particle of light) its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles. The 1997 Nobel Prize in Physics was awarded to Claude Cohen-Tannoudji, Steven Chu, and William Daniel Phillips "for development of methods to cool and trap atoms with laser light". Methods The first example of laser cooling, and also still the most common method (so mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiation Damping
Radiation damping in accelerator physics is a way of reducing the beam emittance of a high-velocity charged particle beam by synchrotron radiation. The two main ways of using radiation damping to reduce the emittance of a particle beam are the use of ''undulators'' and ''damping rings'' (often containing undulators), both relying on the same principle of inducing synchrotron radiation to reduce the particles' momentum, then replacing the momentum only in the desired direction of motion. Damping rings As particles are moving in a closed orbit, the lateral acceleration causes them to emit synchrotron radiation, thereby reducing the size of their momentum vectors (relative to the design orbit) without changing their orientation (ignoring quantum effects for the moment). In longitudinal direction, the loss of particle impulse due to radiation is replaced by accelerating sections ( RF cavities) that are installed in the beam path so that an equilibrium is reached at the design energy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RFQ Beam Cooler
A radio-frequency quadrupole (RFQ) beam cooler is a device for particle beam cooling, especially suited for ion beams. It lowers the temperature of a particle beam by reducing its energy dispersion and emittance, effectively increasing its brightness ( brilliance). The prevalent mechanism for cooling in this case is buffer-gas cooling, whereby the beam loses energy from collisions with a light, neutral and inert gas (typically helium). The cooling must take place within a confining field in order to counteract the thermal diffusion that results from the ion-atom collisions. The quadrupole mass analyzer (a radio frequency quadrupole used as a mass filter) was invented by Wolfgang Paul in the late 1950s to early 60s at the University of Bonn, Germany. Paul shared the 1989 Nobel Prize in Physics for his work. Samples for mass analysis are ionized, for example by laser (matrix-assisted laser desorption/ionization) or discharge (electrospray or inductively coupled plasma) and the resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]