HOME
*





RFQ Beam Cooler
A radio-frequency quadrupole (RFQ) beam cooler is a device for particle beam cooling, especially suited for ion beams. It lowers the temperature of a particle beam by reducing its energy dispersion and emittance, effectively increasing its brightness ( brilliance). The prevalent mechanism for cooling in this case is buffer-gas cooling, whereby the beam loses energy from collisions with a light, neutral and inert gas (typically helium). The cooling must take place within a confining field in order to counteract the thermal diffusion that results from the ion-atom collisions. The quadrupole mass analyzer (a radio frequency quadrupole used as a mass filter) was invented by Wolfgang Paul in the late 1950s to early 60s at the University of Bonn, Germany. Paul shared the 1989 Nobel Prize in Physics for his work. Samples for mass analysis are ionized, for example by laser (matrix-assisted laser desorption/ionization) or discharge (electrospray or inductively coupled plasma) and the resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Beam Cooling
Particle beam cooling is the process of improving the quality of particle beams produced by particle accelerators, by reducing the emittance. Techniques for particle beam cooling include: * Stochastic cooling * Electron coolingI. Meshkov, Electron Cooling: Status and Perspectives, Physics of Particles and Nuclei, Vol. 25, Issue 6, pp. 631-661, 1994 * Ionization cooling * Laser cooling * Radiation damping Radiation damping in accelerator physics is a way of reducing the beam emittance of a high-velocity charged particle beam by synchrotron radiation. The two main ways of using radiation damping to reduce the emittance of a particle beam are the us ... * Buffer-gas cooling within RF quadrupoles References Accelerator physics {{Accelerator-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states, and Israel (admitted in 2013) is currently the only non-European country holding full membership. CERN is an official United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries. In 2016, CERN generated 49 petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Mass Unit
The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted ''m''u, is defined identically, giving . This unit is commonly used in physics and chemistry to express the mass of atomic-scale objects, such as atoms, molecules, and elementary particles, both for discrete instances and multiple types of ensemble averages. For example, an atom of helium-4 has a mass of . This is an intrinsic property of the isotope and all helium-4 atoms have the same mass. Acetylsalicylic acid (aspirin), , has an average mass of approximately . However, there are no acetylsalicylic acid molecules with this mass. The two most common masses of individual acetylsalicylic acid molecules are , having the most common isotopes, and , in which one carbon is carbon-13. The molecular mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GSI Helmholtz Centre For Heavy Ion Research
The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research (german: Gesellschaft für Schwerionenforschung), abbreviated GSI, to conduct research on and with heavy-ion accelerators. It is the only major user research center in the State of Hesse. The laboratory performs basic and applied research in physics and related natural science disciplines. Main fields of study include plasma physics, atomic physics, nuclear structure and reactions research, biophysics and medical research. The lab is a member of the Helmholtz Association of German Research Centres. Shareholders are the German Federal Government (90%) and the State of Hesse, Thuringia and Rhineland-Palatinate. As a member of the Helmholtz Association, the current name was given to the facility on 7 October ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrupole Ion Trap
A quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul, who invented the device and shared the Nobel Prize in Physics in 1989 for this work. It is used as a component of a mass spectrometer or a trapped ion quantum computer. Overview A charged particle, such as an atomic or molecular ion, feels a force from an electric field. It is not possible to create a static configuration of electric fields that traps the charged particle in all three directions (this restriction is known as Earnshaw's theorem). It is possible, however, to create an ''average'' confining force in all three directions by use of electric fields that change in time. To do so, the confining and anti-confining directions are switched at a rate faster than it takes the particle to escape the trap. The traps are also called "radio frequency" traps because the switc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Buffer Gas
A buffer gas is an inert or nonflammable gas. In the Earth's atmosphere, nitrogen acts as a buffer gas. A buffer gas adds pressure to a system and controls the speed of combustion with any oxygen present. Any inert gas such as helium, neon, or argon will serve as a buffer gas. Uses Buffer gases are commonly used in many applications from high pressure discharge lamps to reduce line width of microwave transitions in alkali atoms. A buffer gas usually consists of atomically inert gases such as helium, argon, and nitrogen which are the primary gases used. Krypton, neon, and xenon are also used, primarily for lighting. In most scenarios, buffer gases are used in conjunction with other molecules for the main purpose of causing collisions with the other co-existing molecules. In fluorescent lamps, mercury is used as the primary ion from which light is emitted. Krypton is the buffer gas used in conjunction with the mercury which is used to moderate the momentum of collisions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]