Musical Isomorphism
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle \mathrmM and the cotangent bundle \mathrm^* M of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term ''musical'' refers to the use of the symbols \flat (flat) and \sharp (sharp). In the notation of Ricci calculus, it is also known as raising and lowering indices. Motivation In linear algebra, a finite-dimensional vector space is isomorphic to its dual space but not canonically isomorphic to it. On the other hand a finite-dimensional vector space V endowed with a non-degenerate bilinear form \langle\cdot,\cdot\rangle, is canonically isomorphic to its dual, the isomorphism being given by: \beginV&\rightarrow &V^* \\ v &\mapsto& \langle v,\cdot\rangle\end An example is where V is a Euclidean space, and \langle\cdot,\cdot\rangle is its inner product. Mus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bundle Metric
In differential geometry, the notion of a metric tensor can be extended to an arbitrary vector bundle, and to some principal fiber bundles. This metric is often called a bundle metric, or fibre metric. Definition If ''M'' is a topological manifold and : ''E'' → ''M'' a vector bundle on ''M'', then a metric on ''E'' is a bundle map ''k'' : ''E'' ×''M'' ''E'' → ''M'' × R from the fiber product of ''E'' with itself to the trivial bundle with fiber R such that the restriction of ''k'' to each fibre over ''M'' is a nondegenerate bilinear map of vector spaces.. Roughly speaking, ''k'' gives a kind of dot product (not necessarily symmetric or positive definite) on the vector space above each point of ''M'', and these products vary smoothly over ''M''. Properties Every vector bundle with paracompact base space can be equipped with a bundle metric. For a vector bundle of rank ''n'', this follows from the bundle charts \phi:\pi^(U)\to U\times\mathbb^n: the bundle m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Einstein Summation Convention
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916. Introduction Statement of convention According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see Free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set , : y = \sum_^3 c_i x^i = c_1 x^1 + c_2 x^2 + c_3 x^3 is simplified by the convention to: : y = c_i x^i The upper indices are not exponents but are indices of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nondegenerate Bilinear Form
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definition when ''V'' is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V. Nondegenerate forms A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an isomorphism, or equivalently in finite dimensions, if and only if :f(x,y)=0 for all y \in V implies that x = 0. The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a manifold with an inner product structure on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Bilinear Form
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function B that maps every pair (u,v) of elements of the vector space V to the underlying field such that B(u,v)=B(v,u) for every u and v in V. They are also referred to more briefly as just symmetric forms when "bilinear" is understood. Symmetric bilinear forms on finite-dimensional vector spaces precisely correspond to symmetric matrices given a basis for ''V''. Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form ''B'', the function is the associated quadratic form on the vector space. Moreover, if the characteristic of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Field
In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor is defined on a vector fields set over a module , we call a tensor field on . Many mathematical structures called "tensors" are also tensor fields. For example, the Riemann curvature tensor is a tensor ''field'' as it is defined on a manifold: it is named after Bernhard Riemann, and associates a tensor to each point of a Riemannian manif ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudo Riemannian Metric
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike. Introduction Manifolds In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the coordinates of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coframe
In mathematics, a coframe or coframe field on a smooth manifold M is a system of one-forms or covectors which form a basis of the cotangent bundle at every point. In the exterior algebra of M, one has a natural map from v_k:\bigoplus^kT^*M\to\bigwedge^kT^*M, given by v_k:(\rho_1,\ldots,\rho_k)\mapsto \rho_1\wedge\ldots\wedge\rho_k. If M is n dimensional a coframe is given by a section \sigma of \bigoplus^nT^*M such that v_n\circ\sigma\neq 0. The inverse image under v_n of the complement of the zero section of \bigwedge^nT^*M forms a GL(n) principal bundle over M, which is called the coframe bundle. References * See also * Frame fields in general relativity * Moving frame In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space. Introduction In lay te ... Differential geometry {{differential-geome ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Basis
In linear algebra, given a vector space ''V'' with a basis ''B'' of vectors indexed by an index set ''I'' (the cardinality of ''I'' is the dimension of ''V''), the dual set of ''B'' is a set ''B''∗ of vectors in the dual space ''V''∗ with the same index set ''I'' such that ''B'' and ''B''∗ form a biorthogonal system. The dual set is always linearly independent but does not necessarily span ''V''∗. If it does span ''V''∗, then ''B''∗ is called the dual basis or reciprocal basis for the basis ''B''. Denoting the indexed vector sets as B = \_ and B^ = \_, being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes are equal, and equal to 0 otherwise. Symbolically, evaluating a dual vector in ''V''∗ on a vector in the original space ''V'': : v^i\cdot v_j = \delta^i_j = \begin 1 & \text i = j\\ 0 & \text i \ne j\text \end where \delta^i_j is the Kronecker delta symbol. Introduction To perform operations with a vector, we must ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duality (mathematics)
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the dual of is . Such involutions sometimes have fixed points, so that the dual of is itself. For example, Desargues' theorem is self-dual in this sense under the ''standard duality in projective geometry''. In mathematical contexts, ''duality'' has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings, bilinear functions from an object of one type and another object of the second type to some family of scalars. For instance, ''linear algebra duality'' corresponds in this way to bilinear maps from pairs of vecto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |