HOME

TheInfoList



OR:

In mathematics and
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, a tensor field assigns a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
to each point of a mathematical space (typically a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
or
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
). Tensor fields are used in differential geometry, algebraic geometry,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
, in the analysis of stress and strain in materials, and in numerous applications in the
physical sciences Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences". Definition Phy ...
. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
or vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor is defined on a vector fields set over a module , we call a tensor field on . Many mathematical structures called "tensors" are also tensor fields. For example, the Riemann curvature tensor is a tensor ''field'' as it is defined on a manifold: it is named after Bernhard Riemann, and associates a tensor to each point of a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
, which is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
.


Geometric introduction

Intuitively, a vector field is best visualized as an "arrow" attached to each point of a region, with variable length and direction. One example of a vector field on a
curved space Curved space often refers to a spatial geometry which is not "flat", where a flat space is described by Euclidean geometry. Curved spaces can generally be described by Riemannian geometry though some simple cases can be described in other ways. ...
is a weather map showing horizontal wind velocity at each point of the Earth's surface. Now consider more complicated fields. For example, if the manifold is Riemannian, then it has a metric field g, such that given any two vectors v, w at point x, their inner product is g_x(v, w). The field g could be given in matrix form, but it depends on a choice of coordinates. It could instead be given as an ellipsoid of radius 1 at each point, which is coordinate-free. Applied to the Earth's surface, this is Tissot's indicatrix. In general, we want to specify tensor fields in a coordinate-independent way: It should exist independently of latitude and longitude, or whatever particular "cartographic projection" we are using to introduce numerical coordinates.


Via coordinate transitions

Following and , the concept of a tensor relies on a concept of a reference frame (or coordinate system), which may be fixed (relative to some background reference frame), but in general may be allowed to vary within some class of transformations of these coordinate systems. For example, coordinates belonging to the ''n''-dimensional
real coordinate space In mathematics, the real coordinate space of dimension , denoted ( ) or is the set of the -tuples of real numbers, that is the set of all sequences of real numbers. With component-wise addition and scalar multiplication, it is a real vecto ...
\R^n may be subjected to arbitrary
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
s: :x^k\mapsto A^k_jx^j + a^k (with ''n''-dimensional indices, summation implied). A covariant vector, or covector, is a system of functions v_k that transforms under this affine transformation by the rule :v_k\mapsto v_iA^i_k. The list of Cartesian coordinate basis vectors \mathbf e_k transforms as a covector, since under the affine transformation \mathbf e_k\mapsto A^i_k\mathbf e_i. A contravariant vector is a system of functions v^k of the coordinates that, under such an affine transformation undergoes a transformation :v^k\mapsto (A^)^k_jv^j. This is precisely the requirement needed to ensure that the quantity v^k\mathbf e_k is an invariant object that does not depend on the coordinate system chosen. More generally, a tensor of valence (''p'',''q'') has ''p'' downstairs indices and ''q'' upstairs indices, with the transformation law being :^\mapsto A^_\cdots A^_^(A^)^_\cdots (A^)^_. The concept of a tensor field may be obtained by specializing the allowed coordinate transformations to be smooth (or differentiable, analytic, etc). A covector field is a function v_k of the coordinates that transforms by the
Jacobian In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant *Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler m ...
of the transition functions (in the given class). Likewise, a contravariant vector field v^k transforms by the inverse Jacobian.


Tensor bundles

A tensor bundle is a
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
where the fiber is a tensor product of any number of copies of the tangent space and/or cotangent space of the base space, which is a manifold. As such, the fiber is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
and the tensor bundle is a special kind of
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
. The vector bundle is a natural idea of "vector space depending continuously (or smoothly) on parameters" – the parameters being the points of a manifold ''M''. For example, a ''vector space of one dimension depending on an angle'' could look like a
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and A ...
or alternatively like a cylinder. Given a vector bundle ''V'' over ''M'', the corresponding field concept is called a ''section'' of the bundle: for ''m'' varying over ''M'', a choice of vector :''vm'' in ''Vm'', where ''Vm'' is the vector space "at" ''m''. Since the
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same Field (mathematics), field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an e ...
concept is independent of any choice of basis, taking the tensor product of two vector bundles on ''M'' is routine. Starting with the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
(the bundle of tangent spaces) the whole apparatus explained at component-free treatment of tensors carries over in a routine way – again independently of coordinates, as mentioned in the introduction. We therefore can give a definition of tensor field, namely as a section of some tensor bundle. (There are vector bundles that are not tensor bundles: the Möbius band for instance.) This is then guaranteed geometric content, since everything has been done in an intrinsic way. More precisely, a tensor field assigns to any given point of the manifold a tensor in the space :V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^* , where ''V'' is the tangent space at that point and ''V'' is the cotangent space. See also
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
and
cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
. Given two tensor bundles ''E'' → ''M'' and ''F'' → ''M'', a linear map ''A'': Γ(''E'') → Γ(''F'') from the space of sections of ''E'' to sections of ''F'' can be considered itself as a tensor section of \scriptstyle E^*\otimes F if and only if it satisfies ''A''(''fs'') = ''fA''(''s''), for each section ''s'' in Γ(''E'') and each smooth function ''f'' on ''M''. Thus a tensor section is not only a linear map on the vector space of sections, but a ''C''(''M'')-linear map on the module of sections. This property is used to check, for example, that even though the
Lie derivative In differential geometry, the Lie derivative ( ), named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector fields and one-forms), along the flow defined by another vecto ...
and
covariant derivative In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differ ...
are not tensors, the torsion and curvature tensors built from them are.


Notation

The notation for tensor fields can sometimes be confusingly similar to the notation for tensor spaces. Thus, the tangent bundle ''TM'' = ''T''(''M'') might sometimes be written as :T_0^1(M)=T(M) =TM to emphasize that the tangent bundle is the range space of the (1,0) tensor fields (i.e., vector fields) on the manifold ''M''. This should not be confused with the very similar looking notation :T_0^1(V); in the latter case, we just have one tensor space, whereas in the former, we have a tensor space defined for each point in the manifold ''M''. Curly (script) letters are sometimes used to denote the set of infinitely-differentiable tensor fields on ''M''. Thus, :\mathcal^m_n(M) are the sections of the (''m'',''n'') tensor bundle on ''M'' that are infinitely-differentiable. A tensor field is an element of this set.


The ''C''(''M'') module explanation

There is another more abstract (but often useful) way of characterizing tensor fields on a manifold ''M'', which makes tensor fields into honest tensors (i.e. ''single'' multilinear mappings), though of a different type (although this is ''not'' usually why one often says "tensor" when one really means "tensor field"). First, we may consider the set of all smooth (C) vector fields on ''M'', \mathcal(M) (see the section on notation above) as a single space — a module over the ring of smooth functions, ''C''(''M''), by pointwise scalar multiplication. The notions of multilinearity and tensor products extend easily to the case of modules over any commutative ring. As a motivating example, consider the space \mathcal^*(M) of smooth covector fields (
1-forms In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction to eac ...
), also a module over the smooth functions. These act on smooth vector fields to yield smooth functions by pointwise evaluation, namely, given a covector field ''ω'' and a vector field ''X'', we define :(''ω''(''X''))(''p'') = ''ω''(''p'')(''X''(''p'')). Because of the pointwise nature of everything involved, the action of ''ω'' on ''X'' is a ''C''(''M'')-linear map, that is, :(''ω''(''fX''))(''p'') = ''f''(''p'')''ω''(''p'')(''X''(''p'')) = (''fω'')(''p'')(''X''(''p'')) = (''fω''(''X''))(''p'') for any ''p'' in ''M'' and smooth function ''f''. Thus we can regard covector fields not just as sections of the cotangent bundle, but also linear mappings of vector fields into functions. By the double-dual construction, vector fields can similarly be expressed as mappings of covector fields into functions (namely, we could start "natively" with covector fields and work up from there). In a complete parallel to the construction of ordinary single tensors (not tensor fields!) on ''M'' as multilinear maps on vectors and covectors, we can regard general (''k'',''l'') tensor fields on ''M'' as ''C''(''M'')-multilinear maps defined on ''l'' copies of \mathcal(M) and ''k'' copies of \mathcal^*(M) into ''C''(''M''). Now, given any arbitrary mapping ''T'' from a product of ''k'' copies of \mathcal^*(M) and ''l'' copies of \mathcal(M) into ''C''(''M''), it turns out that it arises from a tensor field on ''M'' if and only if it is multilinear over ''C''(''M''). Thus this kind of multilinearity implicitly expresses the fact that we're really dealing with a pointwise-defined object, i.e. a tensor field, as opposed to a function which, even when evaluated at a single point, depends on all the values of vector fields and 1-forms simultaneously. A frequent example application of this general rule is showing that the
Levi-Civita connection In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves ...
, which is a mapping of smooth vector fields (X,Y) \mapsto \nabla_ Y taking a pair of vector fields to a vector field, does not define a tensor field on ''M''. This is because it is only ''R''-linear in ''Y'' (in place of full ''C''(''M'')-linearity, it satisfies the ''Leibniz rule,'' \nabla_(fY) = (Xf) Y +f \nabla_X Y)). Nevertheless, it must be stressed that even though it is not a tensor field, it still qualifies as a geometric object with a component-free interpretation.


Applications

The curvature tensor is discussed in differential geometry and the stress–energy tensor is important in physics, and these two tensors are related by Einstein's theory of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
. In
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
, the electric and magnetic fields are combined into an electromagnetic tensor field. It is worth noting that
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many application ...
s, used in defining integration on manifolds, are a type of tensor field.


Tensor calculus

In
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experi ...
and other fields, differential equations posed in terms of tensor fields provide a very general way to express relationships that are both geometric in nature (guaranteed by the tensor nature) and conventionally linked to differential calculus. Even to formulate such equations requires a fresh notion, the
covariant derivative In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differ ...
. This handles the formulation of variation of a tensor field ''along'' a vector field. The original ''absolute differential calculus'' notion, which was later called '' tensor calculus'', led to the isolation of the geometric concept of connection.


Twisting by a line bundle

An extension of the tensor field idea incorporates an extra line bundle ''L'' on ''M''. If ''W'' is the tensor product bundle of ''V'' with ''L'', then ''W'' is a bundle of vector spaces of just the same dimension as ''V''. This allows one to define the concept of tensor density, a 'twisted' type of tensor field. A ''tensor density'' is the special case where ''L'' is the bundle of ''densities on a manifold'', namely the determinant bundle of the
cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
. (To be strictly accurate, one should also apply the absolute value to the transition functions – this makes little difference for an orientable manifold.) For a more traditional explanation see the tensor density article. One feature of the bundle of densities (again assuming orientability) ''L'' is that ''L''''s'' is well-defined for real number values of ''s''; this can be read from the transition functions, which take strictly positive real values. This means for example that we can take a ''half-density'', the case where ''s'' = ½. In general we can take sections of ''W'', the tensor product of ''V'' with ''L''''s'', and consider tensor density fields with weight ''s''. Half-densities are applied in areas such as defining integral operators on manifolds, and geometric quantization.


The flat case

When ''M'' is a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
and all the fields are taken to be invariant by translations by the vectors of ''M'', we get back to a situation where a tensor field is synonymous with a tensor 'sitting at the origin'. This does no great harm, and is often used in applications. As applied to tensor densities, it ''does'' make a difference. The bundle of densities cannot seriously be defined 'at a point'; and therefore a limitation of the contemporary mathematical treatment of tensors is that tensor densities are defined in a roundabout fashion.


Cocycles and chain rules

As an advanced explanation of the ''tensor'' concept, one can interpret the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
in the multivariable case, as applied to coordinate changes, also as the requirement for self-consistent concepts of tensor giving rise to tensor fields. Abstractly, we can identify the chain rule as a 1-
cocycle In mathematics a cocycle is a closed cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous d ...
. It gives the consistency required to define the tangent bundle in an intrinsic way. The other vector bundles of tensors have comparable cocycles, which come from applying functorial properties of tensor constructions to the chain rule itself; this is why they also are intrinsic (read, 'natural') concepts. What is usually spoken of as the 'classical' approach to tensors tries to read this backwards – and is therefore a heuristic, ''post hoc'' approach rather than truly a foundational one. Implicit in defining tensors by how they transform under a coordinate change is the kind of self-consistency the cocycle expresses. The construction of tensor densities is a 'twisting' at the cocycle level. Geometers have not been in any doubt about the ''geometric'' nature of tensor ''quantities''; this kind of descent argument justifies abstractly the whole theory.


Generalizations


Tensor densities

The concept of a tensor field can be generalized by considering objects that transform differently. An object that transforms as an ordinary tensor field under coordinate transformations, except that it is also multiplied by the determinant of the
Jacobian In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant *Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler m ...
of the inverse coordinate transformation to the ''w''th power, is called a tensor density with weight ''w''. Invariantly, in the language of multilinear algebra, one can think of tensor densities as multilinear maps taking their values in a density bundle such as the (1-dimensional) space of ''n''-forms (where ''n'' is the dimension of the space), as opposed to taking their values in just R. Higher "weights" then just correspond to taking additional tensor products with this space in the range. A special case are the scalar densities. Scalar 1-densities are especially important because it makes sense to define their integral over a manifold. They appear, for instance, in the Einstein–Hilbert action in general relativity. The most common example of a scalar 1-density is the volume element, which in the presence of a metric tensor ''g'' is the square root of its
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
in coordinates, denoted \sqrt. The metric tensor is a covariant tensor of order 2, and so its determinant scales by the square of the coordinate transition: :\det(g') = \left(\det\frac\right)^2\det(g), which is the transformation law for a scalar density of weight +2. More generally, any tensor density is the product of an ordinary tensor with a scalar density of the appropriate weight. In the language of
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
s, the determinant bundle of the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
is a line bundle that can be used to 'twist' other bundles ''w'' times. While locally the more general transformation law can indeed be used to recognise these tensors, there is a global question that arises, reflecting that in the transformation law one may write either the Jacobian determinant, or its absolute value. Non-integral powers of the (positive) transition functions of the bundle of densities make sense, so that the weight of a density, in that sense, is not restricted to integer values. Restricting to changes of coordinates with positive Jacobian determinant is possible on orientable manifolds, because there is a consistent global way to eliminate the minus signs; but otherwise the line bundle of densities and the line bundle of ''n''-forms are distinct. For more on the intrinsic meaning, see density on a manifold.


See also

* * *


Notes


References

* * . * . * . * . * . * . * . * . * {{Manifolds Multilinear algebra Differential geometry Differential topology Tensors