Iwasawa Decomposition
   HOME
*





Iwasawa Decomposition
In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method. Definition *''G'' is a connected semisimple real Lie group. * \mathfrak_0 is the Lie algebra of ''G'' * \mathfrak is the complexification of \mathfrak_0 . *θ is a Cartan involution of \mathfrak_0 * \mathfrak_0 = \mathfrak_0 \oplus \mathfrak_0 is the corresponding Cartan decomposition * \mathfrak_0 is a maximal abelian subalgebra of \mathfrak_0 *Σ is the set of restricted roots of \mathfrak_0 , corresponding to eigenvalues of \mathfrak_0 acting on \mathfrak_0 . *Σ+ is a choice of positive roots of Σ * \mathfrak_0 is a nilpotent Lie algebra given as the sum of the root spaces of Σ+ *''K'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for (a space over the real numbers) may also serve as a basis for over the complex numbers. Formal definition Let V be a real vector space. The of is defined by taking the tensor product of V with the complex numbers (thought of as a 2-dimensional vector space over the reals): :V^ = V\otimes_ \Complex\,. The subscript, \R, on the tensor product indicates that the tensor product is taken over the real numbers (since V is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, V^ is only a real vector space. However, we can make V^ into a complex vector space by defining complex multiplication as follows: :\alpha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Group Decompositions
{{unreferenced, date=September 2009 In mathematics, Lie group decompositions are used to analyse the structure of Lie groups and associated objects, by showing how they are built up out of subgroups. They are essential technical tools in the representation theory of Lie groups and Lie algebras; they can also be used to study the algebraic topology of such groups and associated homogeneous spaces. Since the use of Lie group methods became one of the standard techniques in twentieth century mathematics, many phenomena can now be referred back to decompositions. The same ideas are often applied to Lie groups, Lie algebras, algebraic groups and p-adic number analogues, making it harder to summarise the facts into a unified theory. List of decompositions * The Jordan–Chevalley decomposition of an element in algebraic group as a product of semisimple and unipotent elements * The Bruhat decomposition ''G'' = ''BWB'' of a semisimple algebraic group into double cosets of a Borel subgro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any integer belongs to K and is an integral element of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the field of rational numbers. And indeed, in algebraic number theory the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of Gaussian integers \mathbb /math>, consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field \mathbb(i) of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \mathbb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Archimedean Field
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparable' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symplectic Group
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by \mathrm(n). Many authors prefer slightly different notations, usually differing by factors of . The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group is denoted , and is the compact real form of . Note that when we refer to ''the'' (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension . The name "symplectic group" is due to Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex". The metaplect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unipotent Group
In mathematics, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' − 1 is a nilpotent element; in other words, (''r'' − 1)''n'' is zero for some ''n''. In particular, a square matrix ''M'' is a unipotent matrix if and only if its characteristic polynomial ''P''(''t'') is a power of ''t'' − 1. Thus all the eigenvalues of a unipotent matrix are 1. The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity. In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent. Definition Definition with matrices Consider the group \mathbb_n of upper-triangular matrices with 1's along the diagonal, so they are the group of matrices :\mathbb_n = \left\. Then, a unipotent group can be defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Compact Subgroup
In mathematics, a maximal compact subgroup ''K'' of a topological group ''G'' is a subgroup ''K'' that is a compact space, in the subspace topology, and maximal amongst such subgroups. Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are ''not'' in general unique, but are unique up to conjugation – they are essentially unique. Example An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R). A related example is the circle group SO(2) inside SL(2, R). Evidently SO(2) inside GL(2, R) is compact and not maximal. The non-uniqueness of these examples can be seen as any inner product has an associated orthogonal group, and the essential uniqueness corresponds to the essential uniqueness of the inner product. Definition A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a ''maximal (compact subgroup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Torus
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by \mathbf G_, \mathbb_m, or \mathbb, is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups \mathbf G_. These groups were named by analogy with the theory of ''tori'' in Lie group theory (see Cartan subgroup). For example, over the complex numbers \mathbb the algebraic torus \mathbf G_ is isomorphic to the group scheme \mathbb^* = \text(\mathbb ,t^, which is the scheme theoretic analogue of the Lie group U(1) \subset \mathbb. In fact, any \mathbf G_-action on a complex vector space can be pulled back to a U(1)-action from the inclusion U(1) \subset \mathbb^* as real manifolds. Tori are of fundamental importance in the theory of algebraic groups and Lie groups and in the study of the geometric objects associated to them such as symmetric spaces and buil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A Surface (mathematics), surface, such as the Boundary (mathematics), boundary of a Cylinder (geometry), cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the Euclidean plane, plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartan Decomposition
In mathematics, the Cartan decomposition is a decomposition of a Semisimple Lie algebra, semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing. Cartan involutions on Lie algebras Let \mathfrak be a real semisimple Lie algebra and let B(\cdot,\cdot) be its Killing form. An Involution (mathematics), involution on \mathfrak is a Lie algebra automorphism \theta of \mathfrak whose square is equal to the identity. Such an involution is called a ''Cartan involution'' on \mathfrak if B_\theta(X,Y) := -B(X,\theta Y) is a positive definite bilinear form. Two involutions \theta_1 and \theta_2 are considered equivalent if they differ only by an inner automorphism. Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Involution
In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing. Cartan involutions on Lie algebras Let \mathfrak be a real semisimple Lie algebra and let B(\cdot,\cdot) be its Killing form. An involution on \mathfrak is a Lie algebra automorphism \theta of \mathfrak whose square is equal to the identity. Such an involution is called a ''Cartan involution'' on \mathfrak if B_\theta(X,Y) := -B(X,\theta Y) is a positive definite bilinear form. Two involutions \theta_1 and \theta_2 are considered equivalent if they differ only by an inner automorphism. Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equivalent. Examples * A Cartan involution on \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]