In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the name symplectic group can refer to two different, but closely related, collections of mathematical
groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
, denoted and for positive integer ''n'' and
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
F (usually C or R). The latter is called the compact symplectic group and is also denoted by
. Many authors prefer slightly different notations, usually differing by factors of . The notation used here is consistent with the size of the most common
matrices
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
which represent the groups. In
Cartan's classification of the
simple Lie algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan.
A direct sum of s ...
s, the Lie algebra of the complex group is denoted , and is the
compact real form
In mathematics, the notion of a real form relates objects defined over the Field (algebra), field of Real number, real and Complex number, complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is ...
of . Note that when we refer to ''the'' (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension .
The name "symplectic group" is
due to Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex".
The
metaplectic group
In mathematics, the metaplectic group Mp2''n'' is a double cover of the symplectic group Sp2''n''. It can be defined over either real or ''p''-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, ...
is a double cover of the symplectic group over R; it has analogues over other
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact ...
s,
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
s, and
adele ring
Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally known by the mononym Adele, is an English singer and songwriter. After graduating in arts from the BRIT School in 2006, Adele signed a reco ...
s.
The symplectic group is a
classical group
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or s ...
defined as the set of
linear transformations
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
of a -dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
over the field which preserve a
non-degenerate
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent defin ...
skew-symmetric bilinear form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
. Such a vector space is called a
symplectic vector space In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
; Bilinear: Linear in each argument ...
, and the symplectic group of an abstract symplectic vector space is denoted . Upon fixing a basis for , the symplectic group becomes the group of
symplectic matrices, with entries in , under the operation of
matrix multiplication
In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
. This group is denoted either or . If the bilinear form is represented by the
nonsingular
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that
:\mathbf = \mathbf = \mathbf_n \
where denotes the -by- identity matrix and the multiplica ...
skew-symmetric matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition
In terms of the entries of the matrix, if a_ ...
Ω, then
:
where ''M''
T is the
transpose
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations).
The tr ...
of ''M''. Often Ω is defined to be
:
where ''I
n'' is the identity matrix. In this case, can be expressed as those block matrices
, where
, satisfying the three equations:
:
Since all symplectic matrices have
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
, the symplectic group is a
subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
of the
special linear group
In mathematics, the special linear group of degree ''n'' over a field ''F'' is the set of matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the genera ...
. When , the symplectic condition on a matrix is satisfied
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...
the determinant is one, so that . For , there are additional conditions, i.e. is then a proper subgroup of .
Typically, the field is the field of
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s . In these cases is a real/complex
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
of real/complex dimension . These groups are
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
but
non-compact.
The
center
Center or centre may refer to:
Mathematics
*Center (geometry), the middle of an object
* Center (algebra), used in various contexts
** Center (group theory)
** Center (ring theory)
* Graph center, the set of all vertices of minimum eccentrici ...
of consists of the matrices and as long as the
characteristic of the field is not . Since the center of is discrete and its quotient modulo the center is a
simple group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service.
The d ...
, is considered a
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symme ...
.
The real rank of the corresponding Lie algebra, and hence of the Lie group , is .
The
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
of is the set
:
equipped with the
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, a ...
as its Lie bracket. For the standard skew-symmetric bilinear form
, this Lie algebra is the set of all block matrices
subject to the conditions
:
The symplectic group over the field of complex numbers is a
non-compact,
simply connected,
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symme ...
.
is the
complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include t ...
of the real group . is a real,
non-compact,
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
,
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symme ...
. It has a
fundamental group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to the group of
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language o ...
under addition. As the
real form
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0:
: \mathf ...
of a
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symme ...
its Lie algebra is a
splittable Lie algebra.
Some further properties of :
* The
exponential map from the
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
to the group is not
surjective
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
. However, any element of the group can be represented as the product of two exponentials. In other words,
::
* For all in :
::
:The matrix is
positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular:
* Positive-definite bilinear form
* Positive-definite fu ...
and
diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δΠ...
. The set of such s forms a non-compact subgroup of whereas forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition. Further
symplectic matrix properties can be found on that Wikipedia page.
* As a
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
, has a manifold structure. The
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
for is
diffeomorphic
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function ...
to the
Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ti ...
of the
unitary group
In mathematics, the unitary group of degree ''n'', denoted U(''n''), is the group of unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group . Hyperorthogonal group is an ...
with a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
of dimension .
Infinitesimal generators
The members of the symplectic Lie algebra are the
Hamiltonian matrices.
These are matrices,
such that
where and are
symmetric matrices
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with re ...
. See
classical group
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or s ...
for a derivation.
Example of symplectic matrices
For , the group of matrices with determinant , the three symplectic -matrices are:
Sp(2n, R)
It turns out that
can have a fairly explicit description using generators. If we let
denote the symmetric
matrices, then
is generated by
where
are subgroups of
pg 173pg 2.
Relationship with symplectic geometry
Symplectic geometry is the study of
symplectic manifolds. The
tangent space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
at any point on a symplectic manifold is a
symplectic vector space In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
; Bilinear: Linear in each argument ...
. As noted earlier, structure preserving transformations of a symplectic vector space form a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
and this group is , depending on the dimension of the space and the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
over which it is defined.
A symplectic vector space is itself a symplectic manifold. A transformation under an
action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
of the symplectic group is thus, in a sense, a linearised version of a
symplectomorphism
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the sy ...
which is a more general structure preserving transformation on a symplectic manifold.
The compact symplectic group is the intersection of with the unitary group:
:
It is sometimes written as . Alternatively, can be described as the subgroup of (invertible
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
ic matrices) that preserves the standard
hermitian form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allow ...
on :
:
That is, is just the
quaternionic unitary group, . Indeed, it is sometimes called the hyperunitary group. Also Sp(1) is the group of quaternions of norm , equivalent to and topologically a
-sphere .
Note that is ''not'' a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric -bilinear form on : there is no such form except the zero form. Rather, it is isomorphic to a subgroup of , and so does preserve a complex symplectic form in a vector space of twice the dimension. As explained below, the Lie algebra of is the compact
real form
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0:
: \mathf ...
of the complex symplectic Lie algebra .
is a real Lie group with (real) dimension . It is
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
and
simply connected.
The Lie algebra of is given by the quaternionic
skew-Hermitian
__NOTOC__
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix A is skew-Hermitian if it satisfies the relatio ...
matrices, the set of quaternionic matrices that satisfy
:
where is the
conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol is an n \times m matrix obtained by transposing \boldsymbol and applying complex conjugate on each entry (the complex con ...
of (here one takes the quaternionic conjugate). The Lie bracket is given by the commutator.
Important subgroups
Some main subgroups are:
:
:
:
Conversely it is itself a subgroup of some other groups:
:
:
:
There are also the
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
s of the
Lie algebras
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
and .
Relationship between the symplectic groups
Every complex,
semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals).
Throughout the article, unless otherwise stated, a Lie algebra i ...
has a
split real form
In mathematics, the notion of a real form relates objects defined over the Field (algebra), field of Real number, real and Complex number, complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is ...
and a
compact real form
In mathematics, the notion of a real form relates objects defined over the Field (algebra), field of Real number, real and Complex number, complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is ...
; the former is called a
complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include t ...
of the latter two.
The Lie algebra of is
semisimple
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
and is denoted . Its
split real form
In mathematics, the notion of a real form relates objects defined over the Field (algebra), field of Real number, real and Complex number, complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is ...
is and its
compact real form
In mathematics, the notion of a real form relates objects defined over the Field (algebra), field of Real number, real and Complex number, complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is ...
is . These correspond to the Lie groups and respectively.
The algebras, , which are the Lie algebras of , are the
indefinite signature equivalent to the compact form.
Physical significance
Classical mechanics
The compact symplectic group comes up in classical physics as the symmetries of canonical coordinates preserving the Poisson bracket.
Consider a system of particles, evolving under
Hamilton's equations
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta ...
whose position in
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
at a given time is denoted by the vector of
canonical coordinates,
:
The elements of the group are, in a certain sense,
canonical transformations
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canoni ...
on this vector, i.e. they preserve the form of
Hamilton's equations
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta ...
.
If
:
are new canonical coordinates, then, with a dot denoting time derivative,
:
where
:
for all and all in phase space.
For the special case of a
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
, Hamilton's equations describe the
geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s on that manifold. The coordinates
live in the
tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
to the manifold, and the momenta
live in the
cotangent bundle. This is the reason why these are conventionally written with upper and lower indexes; it is to distinguish their locations. The corresponding Hamiltonian consists purely of the kinetic energy: it is
where
is the inverse of the
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
on the Riemannian manifold.
[ Ralph Abraham and Jerrold E. Marsden, ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London ] In fact, the cotangent bundle of ''any'' smooth manifold can be a given a (non-trivial)
symplectic structure
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Ha ...
in a canonical way, with the symplectic form defined as the
exterior derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
of the
tautological one-form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus p ...
.
Quantum mechanics
Consider a system of particles whose
quantum state
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
encodes its position and momentum. These coordinates are continuous variables and hence the
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
, in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the
Heisenberg equation
In physics, the Heisenberg picture (also called the Heisenberg representation) is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators ( observables and others) incorporate a dependency on time, b ...
in
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
.
Construct a vector of
canonical coordinates,
:
The
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p_ ...
can be expressed simply as
:
where
:
and is the identity matrix.
Many physical situations only require quadratic
Hamiltonians, i.e.
Hamiltonians of the form
:
where is a real,
symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with re ...
. This turns out to be a useful restriction and allows us to rewrite the
Heisenberg equation
In physics, the Heisenberg picture (also called the Heisenberg representation) is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators ( observables and others) incorporate a dependency on time, b ...
as
:
The solution to this equation must preserve the
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p_ ...
. It can be shown that the time evolution of this system is equivalent to an
action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
of
the real symplectic group, , on the phase space.
See also
*
Orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
*
Unitary group
In mathematics, the unitary group of degree ''n'', denoted U(''n''), is the group of unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group . Hyperorthogonal group is an ...
*
Projective unitary group In mathematics, the projective unitary group is the quotient group, quotient of the unitary group by the right multiplication of its centre of a group, center, , embedded as scalars.
Abstractly, it is the Holomorphic function, holomorphic isometry ...
*
Symplectic manifold,
Symplectic matrix,
Symplectic vector space In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
; Bilinear: Linear in each argument ...
,
Symplectic representation
*
Representations of classical Lie groups
In mathematics, the finite-dimensional representations of the complex classical Lie groups
GL(n,\mathbb), SL(n,\mathbb), O(n,\mathbb), SO(n,\mathbb), Sp(2n,\mathbb),
can be constructed using the general representation theory of semisimple Lie a ...
*
Hamiltonian mechanics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta ...
*
Metaplectic group
In mathematics, the metaplectic group Mp2''n'' is a double cover of the symplectic group Sp2''n''. It can be defined over either real or ''p''-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, ...
*
Θ10
Notes
References
*
*
*.
*
*
*
*.
{{Authority control
Lie groups
Symplectic geometry