HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the ring of integers of an algebraic number field K is the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
of all
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s contained in K. An algebraic integer is a
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
of a
monic polynomial In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form: :x^n+c_x^+\c ...
with
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
belongs to K and is an
integral element In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' is ...
of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s. And indeed, in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of
Gaussian integer In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
s \mathbb /math>, consisting of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s whose
real and imaginary parts In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
are integers. It is the ring of integers in the number field \mathbb(i) of
Gaussian rational In mathematics, a Gaussian rational number is a complex number of the form ''p'' + ''qi'', where ''p'' and ''q'' are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(''i''), obtained b ...
s, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \mathbb /math> is a Euclidean domain. The ring of integers of an algebraic number field is the unique maximal order in the field. It is always a
Dedekind domain In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
.


Properties

The ring of integers is a finitely-generated -
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Mo ...
. Indeed, it is a free -module, and thus has an integral basis, that is a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
of the -
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
  such that each element  in can be uniquely represented as :x=\sum_^na_ib_i, with .Cassels (1986) p. 193 The
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
  of as a free -module is equal to the
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
of  over .


Examples


Computational tool

A useful tool for computing the integral closure of the ring of integers in an algebraic field is the discriminant. If is of degree over , and \alpha_1,\ldots,\alpha_n \in \mathcal_K form a basis of over , set d = \Delta_(\alpha_1,\ldots,\alpha_n). Then, \mathcal_K is a
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
of the spanned by \alpha_1/d,\ldots,\alpha_n/d. pg. 33 In fact, if is square-free, then \alpha_1,\ldots,\alpha_n forms an integral basis for \mathcal_K. pg. 35


Cyclotomic extensions

If is a
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
,  is a th
root of unity In mathematics, a root of unity, occasionally called a Abraham de Moivre, de Moivre number, is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematic ...
and is the corresponding
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
, then an integral basis of is given by .


Quadratic extensions

If d is a
square-free integer In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-f ...
and K = \mathbb(\sqrt\,) is the corresponding
quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 a ...
, then \mathcal_K is a ring of
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form : with and (usual) integers. When algebra ...
s and its integral basis is given by if and by if . This can be found by computing the minimal polynomial of an arbitrary element a + b\sqrt \in \mathbf(\sqrt) where a,b \in \mathbf.


Multiplicative structure

In a ring of integers, every element has a factorization into
irreducible element In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confus ...
s, but the ring need not have the property of
unique factorization In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is a ...
: for example, in the ring of integers , the element 6 has two essentially different factorizations into irreducibles: : 6 = 2 \cdot 3 = (1 + \sqrt)(1 - \sqrt). A ring of integers is always a
Dedekind domain In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
, and so has unique factorization of ideals into prime ideals. The
units Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * Unit (album), ...
of a ring of integers is a
finitely generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n ...
by
Dirichlet's unit theorem In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator is a pos ...
. The
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group (or ...
consists of the
roots of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in ...
of . A set of torsion-free generators is called a set of '' fundamental units''.


Generalization

One defines the ring of integers of a non-archimedean local field as the set of all elements of with absolute value ; this is a ring because of the strong triangle inequality. If is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an algebraic number field may be characterised as the elements which are integers in every non-archimedean completion. For example, the -adic integers are the ring of integers of the -adic numbers .


See also

*
Minimal polynomial (field theory) In field theory, a branch of mathematics, the minimal polynomial of an element of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that is a root of the polynomial. If the minimal polynomi ...
* Integral closure – gives a technique for computing integral closures


Notes


Citations


References

* * * * {{refend Ring theory Algebraic number theory