Lie Group Decompositions
   HOME

TheInfoList



OR:

{{unreferenced, date=September 2009 In mathematics, Lie group decompositions are used to analyse the structure of
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addit ...
s and associated objects, by showing how they are built up out of
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
s. They are essential technical tools in the
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
of Lie groups and
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
s; they can also be used to study the
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
of such groups and associated
homogeneous space In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ...
s. Since the use of Lie group methods became one of the standard techniques in twentieth century mathematics, many phenomena can now be referred back to decompositions. The same ideas are often applied to Lie groups, Lie algebras,
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. ...
s and
p-adic number In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The exte ...
analogues, making it harder to summarise the facts into a unified theory.


List of decompositions

* The Jordan–Chevalley decomposition of an element in algebraic group as a product of semisimple and unipotent elements * The
Bruhat decomposition In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) ''G'' = ''BWB'' of certain algebraic groups ''G'' into cells can be regarded as a general expression of the princip ...
''G'' = ''BWB'' of a semisimple algebraic group into double
coset In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
s of a
Borel subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgrou ...
can be regarded as a generalization of the principle of Gauss–Jordan elimination, which generically writes a matrix as the product of an upper triangular matrix with a lower triangular matrix—but with exceptional cases. It is related to the Schubert cell decomposition of Grassmannians: see
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections ...
for more details. *The Cartan decomposition writes a semisimple real Lie algebra as the sum of eigenspaces of a Cartan involution. * The
Iwasawa decomposition In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a con ...
''G'' = ''KAN'' of a semisimple group ''G'' as the product of
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
, abelian, and
nilpotent In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cl ...
subgroups generalises the way a square real matrix can be written as a product of an
orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity ...
and an
upper triangular matrix In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal ar ...
(a consequence of Gram–Schmidt orthogonalization). *The
Langlands decomposition In mathematics, the Langlands decomposition writes a parabolic subgroup ''P'' of a semisimple Lie group as a product P=MAN of a reductive subgroup ''M'', an abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in wh ...
''P'' = ''MAN'' writes a parabolic subgroup ''P'' of a Lie group as the product of semisimple, abelian, and nilpotent subgroups. * The
Levi decomposition In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real Lie algebra ''g'' is the semidirect product of a solvable ideal and a ...
writes a finite dimensional Lie algebra as a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
of a normal solvable ideal and a
semisimple In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
subalgebra. * The
LU decomposition In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a ...
of a dense subset in the general linear group. It can be considered as a special case of the
Bruhat decomposition In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) ''G'' = ''BWB'' of certain algebraic groups ''G'' into cells can be regarded as a general expression of the princip ...
. * The Birkhoff decomposition, a special case of the
Bruhat decomposition In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) ''G'' = ''BWB'' of certain algebraic groups ''G'' into cells can be regarded as a general expression of the princip ...
for affine groups. Lie groups factorization