Hecke Operator
In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by , is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations. History used Hecke operators on modular forms in a paper on the special cusp form of Ramanujan, ahead of the general theory given by . Mordell proved that the Ramanujan tau function, expressing the coefficients of the Ramanujan form, : \Delta(z)=q\left(\prod_^(1-q^n)\right)^= \sum_^ \tau(n)q^n, \quad q=e^, is a multiplicative function: : \tau(mn)=\tau(m)\tau(n) \quad \text (m,n)=1. The idea goes back to earlier work of Adolf Hurwitz, who treated algebraic correspondences between modular curves which realise some individual Hecke operators. Mathematical description Hecke operators can be realized in a number of contexts. The simplest meaning is combinatorial, namely as taking for a given integer some functio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Coset
In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let be a group, and let and be subgroups. Let act on by left multiplication and let act on by right multiplication. For each in , the -double coset of is the set :HxK = \. When , this is called the -double coset of . Equivalently, is the equivalence class of under the equivalence relation : if and only if there exist in and in such that . The set of all double cosets is denoted by H \,\backslash G / K. Properties Suppose that is a group with subgroups and acting by left and right multiplication, respectively. The -double cosets of may be equivalently described as orbits for the product group acting on by . Many of the basic properties of double cosets follow immediately from the fact that they are orbits. However, because is a group and and are subgroups acting by multiplicati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mellin Transform
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a function is :\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx. The inverse transform is :\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notation implies this is a line integral taken over a vertical line in the complex plane, whose real part ''c'' need only satisfy a mild lower bound. Conditions under which this inversion is valid are given in the Mellin inversion theorem. The transform is named after the Finnish mathematician Hjalmar Mellin, who introduced it in a paper publishe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Product
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function. Definition In general, if is a bounded multiplicative function, then the Dirichlet series :\sum_ \frac\, is equal to :\prod_ P(p, s) \quad \text \operatorname(s) >1 . where the product is taken over prime numbers , and is the sum :\sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots In fact, if we consider these as formal generating functions, the existence of such a ''formal'' Euler product expansion is a necessary and sufficient condition that be multiplicative: this says exactly that is the product of the whenever factors as the product of the powers of distinct primes . An important special case is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as Df = \lambda f for some scalar eigenvalue \lambda. The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions. An eigenfunction is a type of eigenvector. Eigenfunctions In general, an eigenvector of a linear operator ''D'' defined on some vector space is a nonzero vector in the domain of ''D'' that, when ''D'' acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where ''D'' is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a function ''f'' is an eigenfunction of ''D'' if it satisfies the equation where λ is a scalar. The solutions to Equation may also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Theorem
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix (mathematics), matrix can be Diagonalizable matrix, diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective. Examples of operators to which the spectral theorem appl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Petersson Inner Product
In mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson. Definition Let \mathbb_k be the space of entire modular forms of weight k and \mathbb_k the space of cusp forms. The mapping \langle \cdot , \cdot \rangle : \mathbb_k \times \mathbb_k \rightarrow \mathbb, :\langle f , g \rangle := \int_\mathrm f(\tau) \overline (\operatorname\tau)^k d\nu (\tau) is called Petersson inner product, where :\mathrm = \left\ is a fundamental region of the modular group \Gamma and for \tau = x + iy :d\nu(\tau) = y^dxdy is the hyperbolic volume form. Properties The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form. For the Hecke operators T_n, and for forms f,g of level \Gamma_0, we have: :\langle T_n f , g \rangle = \langle f , T_n g \rangle This can be used to show that the space of cusp forms of level \Gamma_0 has ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Self-adjoint Operator
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. If ''V'' is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of ''A'' is a Hermitian matrix, i.e., equal to its conjugate transpose ''A''. By the finite-dimensional spectral theorem, ''V'' has an orthonormal basis such that the matrix of ''A'' relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as positi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Modular Form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory. A modular function is a function that is invariant with respect to the modular group, but without the condition that be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic (that is, they are holomorphic on the complement of a set of isolated points, which are poles of the function). Modular form theory is a special case of the more general theory of automorphic forms which are functions defined on Lie groups which transform nicely with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenform
In mathematics, an eigenform (meaning simultaneous Hecke eigenform with modular group SL(2,Z)) is a modular form which is an eigenvector for all Hecke operators ''Tm'', ''m'' = 1, 2, 3, .... Eigenforms fall into the realm of number theory, but can be found in other areas of math and science such as analysis, combinatorics, and physics. A common example of an eigenform, and the only non-cuspidal eigenforms, are the Eisenstein series. Another example is the Δ Function. In second-order cybernetics, eigenforms are an example of a self-referential system.Kauffman, L. H. (2003). Eigenforms: Objects as tokens for eigenbehaviors. Cybernetics and Human Knowing, 10(3/4), 73-90. Normalization There are two different normalizations for an eigenform (or for a modular form in general). Algebraic normalization An eigenform is said to be normalized when scaled so that the ''q''-coefficient in its Fourier series is one: :f = a_0 + q + \sum_^\infty a_i q^i wher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the axis is oriented vertically, the "upper half-plane" corresponds to the region above the axis and thus complex numbers for which > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by 0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = (diame ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |