HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, in particular in the theory of
modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
s, a Hecke operator, studied by , is a certain kind of "averaging" operator that plays a significant role in the structure of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s of modular forms and more general
automorphic representation In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of ...
s.


History

used Hecke operators on modular forms in a paper on the special
cusp form In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular gro ...
of Ramanujan, ahead of the general theory given by . Mordell proved that the
Ramanujan tau function The Ramanujan tau function, studied by , is the function \tau : \mathbb \rarr\mathbb defined by the following identity: :\sum_\tau(n)q^n=q\prod_\left(1-q^n\right)^ = q\phi(q)^ = \eta(z)^=\Delta(z), where with , \phi is the Euler function, is the ...
, expressing the coefficients of the Ramanujan form, : \Delta(z)=q\left(\prod_^(1-q^n)\right)^= \sum_^ \tau(n)q^n, \quad q=e^, is a
multiplicative function In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is ...
: : \tau(mn)=\tau(m)\tau(n) \quad \text (m,n)=1. The idea goes back to earlier work of
Adolf Hurwitz Adolf Hurwitz (; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. Early life He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died ...
, who treated algebraic correspondences between
modular curve In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular grou ...
s which realise some individual Hecke operators.


Mathematical description

Hecke operators can be realized in a number of contexts. The simplest meaning is combinatorial, namely as taking for a given integer some function defined on the lattices of fixed rank to :\sum f(\Lambda') with the sum taken over all the that are
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s of of index . For example, with and two dimensions, there are three such .
Modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
s are particular kinds of functions of a lattice, subject to conditions making them
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex an ...
s and
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
with respect to homotheties, as well as moderate growth at infinity; these conditions are preserved by the summation, and so Hecke operators preserve the space of modular forms of a given weight. Another way to express Hecke operators is by means of
double coset In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let be a group, and let and be subgroups. Let act on by left multi ...
s in the
modular group In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional l ...
. In the contemporary adelic approach, this translates to double cosets with respect to some compact subgroups.


Explicit formula

Let be the set of integral matrices with
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
and be the full
modular group In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional l ...
. Given a modular form of weight , the th Hecke operator acts by the formula : T_m f(z) = m^\sum_(cz+d)^f\left(\frac\right), where is in the
upper half-plane In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to t ...
and the normalization constant assures that the image of a form with integer Fourier coefficients has integer Fourier coefficients. This can be rewritten in the form : T_m f(z) = m^\sum_\frac\sum_ f\left(\frac\right), which leads to the formula for the Fourier coefficients of in terms of the Fourier coefficients of : : b_n = \sum_r^a_. One can see from this explicit formula that Hecke operators with different indices commute and that if then , so the subspace of cusp forms of weight is preserved by the Hecke operators. If a (non-zero) cusp form is a simultaneous eigenform of all Hecke operators with eigenvalues then and . Hecke eigenforms are normalized so that , then : T_m f = a_m f, \quad a_m a_n = \sum_r^a_,\ m,n\geq 1. Thus for normalized cuspidal Hecke eigenforms of integer weight, their Fourier coefficients coincide with their Hecke eigenvalues.


Hecke algebras

Algebras of Hecke operators are called "Hecke algebras", and are
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
s. In the classical
elliptic modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory o ...
theory, the Hecke operators with coprime to the level acting on the space of cusp forms of a given weight are
self-adjoint In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a sta ...
with respect to the
Petersson inner product In mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson. Definition Let \mathbb_k be the space of entire modular forms of weight k a ...
. Therefore, the
spectral theorem In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix (mathematics), matrix can be Diagonalizable matrix, diagonalized (that is, represented as a diagonal matrix i ...
implies that there is a basis of modular forms that are
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
s for these Hecke operators. Each of these basic forms possesses an
Euler product In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Eul ...
. More precisely, its
Mellin transform In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used i ...
is the
Dirichlet series In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analyti ...
that has
Euler product In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Eul ...
s with the local factor for each prime is the inverse of the Hecke polynomial, a quadratic polynomial in . In the case treated by Mordell, the space of cusp forms of weight 12 with respect to the full modular group is one-dimensional. It follows that the Ramanujan form has an Euler product and establishes the multiplicativity of . Other related mathematical rings are also called "Hecke algebras", although sometimes the link to Hecke operators is not entirely obvious. These algebras include certain quotients of the group algebras of
braid group A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-strande ...
s. The presence of this commutative operator algebra plays a significant role in the
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
of modular forms and generalisations.


See also

*
Eichler–Shimura congruence relation In number theory, the Eichler–Shimura congruence relation expresses the local ''L''-function of a modular curve at a prime ''p'' in terms of the eigenvalues of Hecke operators. It was introduced by and generalized by . Roughly speaking, it say ...
*
Hecke algebra In mathematics, the Hecke algebra is the algebra generated by Hecke operators. Properties The algebra is a commutative ring. In the classical elliptic modular form theory, the Hecke operators ''T'n'' with ''n'' coprime to the level acting on ...
*
Abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
*
Wiles's proof of Fermat's Last Theorem Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's ...


References

* ''(See chapter 8.)'' * * * * *
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ina ...
, ''A course in arithmetic''. *
Don Zagier Don Bernard Zagier (born 29 June 1951) is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the ''Col ...
, ''Elliptic Modular Forms and Their Applications'', in ''The 1-2-3 of Modular Forms'', Universitext, Springer, 2008 {{ISBN, 978-3-540-74117-6 Modular forms