Paul Lévy (mathematician)
   HOME
*





Paul Lévy (mathematician)
Paul Pierre Lévy (15 September 1886 – 15 December 1971) was a French mathematician who was active especially in probability theory, introducing fundamental concepts such as local time, stable distributions and characteristic functions. Lévy processes, Lévy flights, Lévy measures, Lévy's constant, the Lévy distribution, the Lévy area, the Lévy arcsine law, and the fractal Lévy C curve are named after him. Biography Lévy was born in Paris to a Jewish family which already included several mathematicians. His father Lucien Lévy was an examiner at the École Polytechnique. Lévy attended the École Polytechnique and published his first paper in 1905, at the age of nineteen, while still an undergraduate, in which he introduced the Lévy–Steinitz theorem. His teacher and advisor was Jacques Hadamard. After graduation, he spent a year in military service and then studied for three years at the École des Mines, where he became a professor in 1913. During Worl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris
Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. Since the 17th century, Paris has been one of the world's major centres of finance, diplomacy, commerce, fashion, gastronomy, and science. For its leading role in the arts and sciences, as well as its very early system of street lighting, in the 19th century it became known as "the City of Light". Like London, prior to the Second World War, it was also sometimes called the capital of the world. The City of Paris is the centre of the Île-de-France region, or Paris Region, with an estimated population of 12,262,544 in 2019, or about 19% of the population of France, making the region France's primate city. The Paris Region had a GDP of €739 billion ($743 billion) in 2019, which is the highest in Europe. According to the Economist Intelli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Concentration Of Measure
In mathematics, concentration of measure (about a median) is a principle that is applied in measure theory, probability and combinatorics, and has consequences for other fields such as Banach space theory. Informally, it states that "A random variable that depends in a Lipschitz way on many independent variables (but not too much on any of them) is essentially constant". The concentration of measure phenomenon was put forth in the early 1970s by Vitali Milman in his works on the local theory of Banach spaces, extending an idea going back to the work of Paul Lévy. It was further developed in the works of Milman and Gromov, Maurey, Pisier, Schechtman, Talagrand, Ledoux, and others. The general setting Let (X, d) be a metric space with a measure \mu on the Borel sets with \mu(X) = 1. Let :\alpha(\epsilon) = \sup \left\, where :A_\epsilon = \left\ is the \epsilon-''extension'' (also called \epsilon-fattening in the context of the Hausdorff distance) of a set A. The funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy's Modulus Of Continuity Theorem
Lévy's modulus of continuity theorem is a theorem that gives a result about an almost sure behaviour of an estimate of the modulus of continuity for Wiener process, that is used to model what's known as Brownian motion. Lévy's modulus of continuity theorem is named after the French mathematician Paul Lévy. Statement of the result Let B : , 1\times \Omega \to \mathbb be a standard Wiener process. Then, almost surely, :\lim_ \sup_ \frac = 1. In other words, the sample paths of Brownian motion have modulus of continuity :\omega_ (\delta) = \sqrt with probability one, and for sufficiently small \delta > 0.Lévy, P. Author Profile Théorie de l’addition des variables aléatoires. 2. éd. (French) page 172 Zbl 0056.35903 (Monographies des probabilités.) Paris: Gauthier-Villars, XX, 387 p. (1954) See also * Some properties of sample paths of the Wiener process References * Paul Pierre Lévy, ''Théorie de l'addition des variables aléatoires.'' Gauthier-Villars, Pari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy Measure
Levy, Lévy or Levies may refer to: People * Levy (surname), people with the surname Levy or Lévy * Levy Adcock (born 1988), American football player * Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker * Levy Fidelix (1951–2021), Brazilian conservative politician, businessman and journalist * Levy Gerzberg (born 1945), Israeli-American entrepreneur, inventor, and business person * Levy Li (born 1987), Miss Malaysia Universe 2008–2009 * Levy Mashiane (born 1996), South African footballer * Levy Matebo Omari (born 1989), Kenyan long-distance runner * Levy Mayer (1858–1922), American lawyer * Levy Middlebrooks (born 1966), American basketball player * Levy Mokgothu, South African footballer * Levy Mwanawasa (1948–2008), President of Zambia from 2002 * Levy Nzoungou (born 1998), Congolese-French rugby player, playing in England * Levy Rozman (born 1995), American chess IM, coach, and content creator * Levy Sekgapane (born 1990), South Af ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Local Time (mathematics)
In the mathematical theory of stochastic processes, local time is a stochastic process associated with semimartingale processes such as Brownian motion, that characterizes the amount of time a particle has spent at a given level. Local time appears in various stochastic integration formulas, such as Tanaka's formula, if the integrand is not sufficiently smooth. It is also studied in statistical mechanics in the context of random fields. Formal definition For a continuous real-valued semimartingale (B_s)_, the local time of B at the point x is the stochastic process which is informally defined by :L^x(t) =\int_0^t \delta(x-B_s)\,d s, where \delta is the Dirac delta function and /math> is the quadratic variation. It is a notion invented by Paul Lévy. The basic idea is that L^x(t) is an (appropriately rescaled and time-parametrized) measure of how much time B_s has spent at x up to time t. More rigorously, it may be written as the almost sure limit : L^x(t) =\lim_ \frac \int_0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lévy Flight
A Lévy flight is a random walk in which the step-lengths have a Lévy distribution, a probability distribution that is heavy-tailed. When defined as a walk in a space of dimension greater than one, the steps made are in isotropic random directions. Later researchers have extended the use of the term "Lévy flight" to also include cases where the random walk takes place on a discrete grid rather than on a continuous space. The term "Lévy flight" was coined by Benoît Mandelbrot, who used this for one specific definition of the distribution of step sizes. He used the term Cauchy flight for the case where the distribution of step sizes is a Cauchy distribution, and Rayleigh flight for when the distribution is a normal distribution (which is not an example of a heavy-tailed probability distribution). The particular case for which Mandelbrot used the term "Lévy flight" is defined by the survivor function of the distribution of step-sizes, ''U'', being :\Pr(U>u) = \begin 1 &:\ u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy Distribution
In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile."van der Waals profile" appears with lowercase "van" in almost all sources, such as: ''Statistical mechanics of the liquid surface'' by Clive Anthony Croxton, 1980, A Wiley-Interscience publication, , and in ''Journal of technical physics'', Volume 36, by Instytut Podstawowych Problemów Techniki (Polska Akademia Nauk), publisher: Państwowe Wydawn. Naukowe., 1995/ref> It is a special case of the inverse-gamma distribution. It is a stable distribution. Definition The probability density function of the Lévy distribution over the domain x\ge \mu is :f(x;\mu,c)=\sqrt~~\frac where \mu is the location parameter and c is the scale parameter. The cumulative distribution function is :F(x;\mu,c)=1 - \textrm\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy's Continuity Theorem
In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions. This theorem is the basis for one approach to prove the central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselv ... and it is one of the major theorems concerning characteristic functions. Statement Suppose we have If the sequence of characteristic functions converges pointwise to some function \varphi :\varphi_n(t)\to\varphi(t) \quad \forall t\in\mathbb, then the following statements become equivalent: Proof Rigorous proofs of this theorem are available. References {{DEFAULTSORT:Levy continui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brownian Motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the equipartition theorem). This motion is named after the botanist Robert Brown, who first described the phenomenon in 1827, while looking throu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy's Constant
In mathematics Lévy's constant (sometimes known as the Khinchin–Lévy constant) occurs in an expression for the asymptotic behaviour of the denominators of the convergents of continued fractions. In 1935, the Soviet mathematician Aleksandr Khinchin showed that the denominators ''q''''n'' of the convergents of the continued fraction expansions of almost all real numbers satisfy :\lim_^= e^ Soon afterward, in 1936, the French mathematician Paul Lévy found eference given in Dover bookP. Levy, ''Théorie de l'addition des variables aléatoires'', Paris, 1937, p. 320. the explicit expression for the constant, namely :e^ = e^ = 3.275822918721811159787681882\ldots The term "Lévy's constant" is sometimes used to refer to \pi^2/(12\ln2) (the logarithm of the above expression), which is approximately equal to 1.1865691104… The value derives from the asymptotic expectation of the logarithm of the ratio of successive denominators, using the Gauss-Kuzmin distribution. In particu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lévy C Curve
In mathematics, the Lévy C curve is a self-similar fractal curve that was first described and whose differentiability properties were analysed by Ernesto Cesàro in 1906 and Georg Faber in 1910, but now bears the name of French mathematician Paul Lévy, who was the first to describe its self-similarity properties as well as to provide a geometrical construction showing it as a representative curve in the same class as the Koch curve. It is a special case of a period-doubling curve, a de Rham curve. L-system construction If using a Lindenmayer system then the construction of the C curve starts with a straight line. An isosceles triangle with angles of 45°, 90° and 45° is built using this line as its hypotenuse. The original line is then replaced by the other two sides of this triangle. At the second stage, the two new lines each form the base for another right-angled isosceles triangle, and are replaced by the other two sides of their respective triangle. So, after two stag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arcsine Laws (Wiener Process)
In probability theory, the arcsine laws are a collection of results for one-dimensional random walks and Brownian motion (the Wiener process). The best known of these is attributed to . All three laws relate path properties of the Wiener process to the arcsine distribution In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: :F(x) = \frac\arcsin\left(\sqrt x\right)=\frac+\frac for 0 ≤ ''x''  .... A random variable ''X'' on ,1is arcsine-distributed if : \Pr \left X \leq x \right= \frac \arcsin\left(\sqrt\right), \qquad \forall x \in ,1 Statement of the laws Throughout we suppose that (''W''''t'')0  ≤ ''t'' ≤ 1 ∈ R is the one-dimensional Wiener process on ,1 Scale invariance ensures that the results can be generalised to Wiener processes run for ''t'' ∈ \\ be the Lebesgue measure, measure of the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]