HOME
*





Arcsine Laws (Wiener Process)
In probability theory, the arcsine laws are a collection of results for one-dimensional random walks and Brownian motion (the Wiener process). The best known of these is attributed to . All three laws relate path properties of the Wiener process to the arcsine distribution In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: :F(x) = \frac\arcsin\left(\sqrt x\right)=\frac+\frac for 0 ≤ ''x''  .... A random variable ''X'' on ,1is arcsine-distributed if : \Pr \left X \leq x \right= \frac \arcsin\left(\sqrt\right), \qquad \forall x \in ,1 Statement of the laws Throughout we suppose that (''W''''t'')0  ≤ ''t'' ≤ 1 ∈ R is the one-dimensional Wiener process on ,1 Scale invariance ensures that the results can be generalised to Wiener processes run for ''t'' ∈ \\ be the Lebesgue measure, measure of the set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wiener Process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown (Scottish botanist from Montrose), Robert Brown. It is one of the best known Lévy processes (càdlàg stochastic processes with stationary increments, stationary independent increments) and occurs frequently in pure and applied mathematics, economy, economics, quantitative finance, evolutionary biology, and physics. The Wiener process plays an important role in both pure and applied mathematics. In pure mathematics, the Wiener process gave rise to the study of continuous time martingale (probability theory), martingales. It is a key process in terms of which more complicated sto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arcsine Distribution
In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root: :F(x) = \frac\arcsin\left(\sqrt x\right)=\frac+\frac for 0 ≤ ''x'' ≤ 1, and whose probability density function is :f(x) = \frac on (0, 1). The standard arcsine distribution is a special case of the beta distribution with ''α'' = ''β'' = 1/2. That is, if X is an arcsine-distributed random variable, then X \sim \bigl(\tfrac,\tfrac\bigr). By extension, the arcsine distribution is a special case of the Pearson type I distribution. The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial. Generalization Arbitrary bounded support The distribution can be expanded to include any bounded support from ''a'' ≤ ''x'' ≤ ''b'' by a si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called ''n''-dimensional volume, ''n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set ''A'' is here denoted by ''λ''(''A''). Henri Lebesgue described this measure in the year 1901, followed the next year by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesgue oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositio Mathematica
''Compositio Mathematica'' is a monthly peer-reviewed mathematics journal established by L.E.J. Brouwer in 1935. It is owned by the Foundation Compositio Mathematica, and since 2004 it has been published on behalf of the Foundation by the London Mathematical Society in partnership with Cambridge University Press. According to the ''Journal Citation Reports'', the journal has a 2020 2-year impact factor of 1.456 and a 2020 5-year impact factor of 1.696. The editors-in-chief are Jochen Heinloth, Bruno Klingler, Lenny Taelman, and Éric Vasserot. Early history The journal was established by L. E. J. Brouwer in response to his dismissal from ''Mathematische Annalen'' in 1928. An announcement of the new journal was made in a 1934 issue of the ''American Mathematical Monthly''. In 1940 the publication of the journal was suspended due to the German occupation of the Netherlands Despite Dutch neutrality, Nazi Germany invaded the Netherlands on 10 May 1940 as part of Fall Gelb (Case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]