AESNI
   HOME
*





AESNI
An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using Advanced Encryption Standard (AES). They are often implemented as instructions implementing a single round of AES along with a special version for the last round which has a slightly different method. The side channel attack surface of AES is reduced when implemented in an instruction set, compared to when AES is implemented in software only. x86 architecture processors AES-NI (or the Intel Advanced Encryption Standard New Instructions; AES-NI) was the first major implementation. AES-NI is an extension to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008. Instructions Intel The following Intel processors support the AES-NI instruction set: * Westmere based processors, specifically: ** Westmere- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldmont
Goldmont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. They allow only one thread per core. The ''Apollo Lake'' platform with 14 nm Goldmont core was unveiled at the Intel Developer Forum (IDF) in Shenzhen, China, April 2016. The Goldmont architecture borrows heavily from the Skylake Core processors, so it offers a more than 30 percent performance boost compared to the previous Braswell platform, and it can be used to implement power-efficient low-end devices including Cloudbooks, 2-in-1 netbooks, small PCs, IP cameras, and in-car entertainment systems. Design Goldmont is the 2nd generation out-of-order low-power Atom microarchitecture designed for the entry level desktop and notebook computers. Goldmont is built on the 14 nm manufacturing process and supports up to four cores for the consumer devices. It includes the Intel Gen9 graphics architecture introduced with the Skylake. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on Novemb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broadwell (microarchitecture)
Broadwell is the fifth generation of the Intel Core Processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture ( Haswell), as there were no low-end desktop CPUs based on Broadwell. Some of the processors based on the Broadwell microarchitecture are marketed as "5th-generation Core" i3, i5 and i7 processors. This moniker is however not used for marketing of the Broadwell-based Celeron, Pentium or Xeon chips. This microarchitecture also introduced the Core M processor branding. Broadwell is the last Intel platform on which Windows 7 is supported by either Intel or Microsoft; however, third-party hardware vendors have offered limited Windows 7 support on more recent platforms. Broadwell's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SPARC T4
The SPARC T4 is a SPARC multicore microprocessor introduced in 2011 by Oracle Corporation. The processor is designed to offer high multithreaded performance (8 threads per core, with 8 cores per chip), as well as high single threaded performance from the same chip. The chip is the 4th generation processor in the T-Series family. Sun Microsystems brought the first T-Series processor (UltraSPARC T1) to market in 2005. The chip is the first Sun/Oracle SPARC chip to use dynamic threading and out-of-order execution. It incorporates one floating point unit and one dedicated cryptographic unit per core. The cores use the 64-bit SPARC Version 9 architecture running at frequencies between 2.85 GHz and 3.0 GHz, and are built in a 40  nm process with a die size of . History and design An eight core, eight thread per core chip built in a 40 nm process and running at 2.5 GHz was described in Sun Microsystems' processor roadmap of 2009. It was codenamed "Yosemite Fal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SPARC T3
The SPARC T3 microprocessor (previously known as UltraSPARC T3, codenamed ''Rainbow Falls'', and also known as UltraSPARC KT or ''Niagara-3'' during development) is a multithreading, multi-core CPU produced by Oracle Corporation (previously Sun Microsystems). Officially launched on 20 September 2010, it is a member of the SPARC family, and the successor to the UltraSPARC T2. Performance Overall single socket and multi-socket throughput increased with the T3 processor in systems, providing superior throughput with half the CPU socket requirements to its predecessor. The throughput (SPEC CINT2006 rate) increased in single a socket T3-1 platform in comparison to its predecessor T2+ processor in a dual-socket T5240 platform. Under simulated web serving workloads, dual-socket based SPARC T3 systems benchmarked better performance than quad-socket (previous generation) UltraSPARC T2+ systems (as well as competing dual and quad socket contemporary systems). History Online IT public ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SPARC
SPARC (Scalable Processor Architecture) is a reduced instruction set computer (RISC) instruction set architecture originally developed by Sun Microsystems. Its design was strongly influenced by the experimental Berkeley RISC system developed in the early 1980s. First developed in 1986 and released in 1987, SPARC was one of the most successful early commercial RISC systems, and its success led to the introduction of similar RISC designs from many vendors through the 1980s and 1990s. The first implementation of the original 32-bit architecture (SPARC V7) was used in Sun's Sun-4 computer workstation and server systems, replacing their earlier Sun-3 systems based on the Motorola 68000 series of processors. SPARC V8 added a number of improvements that were part of the SuperSPARC series of processors released in 1992. SPARC V9, released in 1993, introduced a 64-bit architecture and was first released in Sun's UltraSPARC processors in 1995. Later, SPARC processors were used in symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zen (microarchitecture)
Zen is the codename for a family of computer processor microarchitectures from AMD, first launched in February 2017 with the first generation of its Ryzen CPUs. It is used in Ryzen (desktop and mobile), Ryzen Threadripper (workstation/high end desktop), and Epyc (server). Comparison History First generation The first generation Zen was launched with the Ryzen 1000 series of CPUs (codenamed Summit Ridge) in February 2017. The first Zen-based preview system was demonstrated at E3 2016, and first substantially detailed at an event hosted a block away from the Intel Developer Forum 2016. The first Zen-based CPUs reached the market in early March 2017, and Zen-derived Epyc server processors (codenamed "Naples") launched in June 2017 and Zen-based APUs (codenamed "Raven Ridge") arrived in November 2017. This first iteration of Zen utilized Global Foundries' 14 nm manufacturing process. First generation refresh Zen+ was first released in April 2018, powering the second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Excavator (microarchitecture)
AMD Excavator Family 15h is a microarchitecture developed by Advanced Micro Devices, AMD to succeed Steamroller (microarchitecture), Steamroller Family 15h for use in AMD APU processors and normal CPUs. On October 12, 2011, AMD revealed Excavator to be the code name for the fourth-generation Bulldozer (microarchitecture), Bulldozer-derived core. The Excavator-based Accelerated processing unit, APU for mainstream applications is called ''Carrizo'' and was released in 2015. The ''Carrizo'' APU is designed to be Heterogeneous System Architecture, HSA 1.0 compliant. An Excavator-based APU and CPU variant named ''Toronto'' for server and enterprise markets was also produced. Excavator was the final revision of the Bulldozer (microarchitecture)#Revisions, "Bulldozer" family, with two new microarchitectures replacing Excavator a year later. Excavator was succeeded by the x86-64 Zen (first generation microarchitecture), Zen architecture in early 2017. Architecture Excavator added hardwar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steamroller (microarchitecture)
AMD Steamroller Family 15h is a microarchitecture developed by AMD for AMD APUs, which succeeded Piledriver in the beginning of 2014 as the third-generation Bulldozer-based microarchitecture. Steamroller APUs continue to use two-core modules as their predecessors, while aiming at achieving greater levels of parallelism. Microarchitecture ''Steamroller'' still features two-core modules found in ''Bulldozer'' and ''Piledriver'' designs called clustered multi-thread (CMT), meaning that one module is marketed as a dual-core processor. The focus of ''Steamroller'' is for greater parallelism. Improvements center on independent instruction decoders for each core within a module, 25% more of the maximum width dispatches per thread, better instruction schedulers, improved perceptron branch predictor, larger and smarter caches, up to 30% fewer instruction cache misses, branch misprediction rate reduced by 20%, dynamically resizable L2 cache, micro-operations queue, more internal regist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Piledriver (microarchitecture)
AMD Piledriver Family 15h is a microarchitecture developed by AMD as the second-generation successor to Bulldozer. It targets desktop, mobile and server markets. It is used for the AMD Accelerated Processing Unit (formerly Fusion), AMD FX, and the Opteron line of processors. The changes over Bulldozer are incremental. Piledriver uses the same "module" design. Its main improvements are to branch prediction and FPU/integer scheduling, along with a switch to hard-edge flip-flops to improve power consumption. This resulted in clock speed gains of 8–10% and a performance increase of around 15% with similar power characteristics. FX-9590 is around 40% faster than Bulldozer-based FX-8150, mostly because of higher clock speed. Products based on Piledriver were first released on 15 May 2012 with the AMD Accelerated Processing Unit (APU), code-named Trinity, series of mobile products. APUs aimed at desktops followed in early October 2012 with Piledriver-based FX-series CPUs released l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bulldozer (microarchitecture)
The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture. Bulldozer is designed from scratch, not a development of earlier processors. The core is specifically aimed at computing products with TDPs of 10 to 125 watts. AMD claims dramatic performance-per-watt efficiency improvements in high-performance computing (HPC) applications with Bulldozer cores. The ''Bulldozer'' cores support most of the instruction sets implemented by Intel processors (Sandy Bridge) available at its introduction (including SSE4.1, SSE4.2, AES, CLMUL, and AVX) as well as new instruction sets proposed by AMD; ABM, XOP, FMA4 and F16C. Only Bulldozer GEN4 (Excavator) supports AVX2 instruction sets. Overview According to AMD, Bulldozer-based CPU ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Puma (microarchitecture)
The Puma Family 16h is a low-power microarchitecture by AMD for its APUs. It succeeds the Jaguar as a second-generation version, targets the same market, and belongs to the same AMD architecture Family 16h. The ''Beema'' line of processors are aimed at low-power notebooks, and ''Mullins'' are targeting the tablet sector. Design The Puma cores use the same microarchitecture as Jaguar, and inherits the design: * Out-of-order execution and Speculative execution, up to 4 CPU cores * Two-way integer execution * Two-way 128-bit wide floating-point and packed integer execution * Integer hardware divider * Puma does not feature clustered multi-thread (CMT), meaning that there are no "modules" * Puma does not feature Heterogeneous System Architecture or zero-copy * 32 KiB instruction + 32 KiB data L1 cache per core * 1–2 MiB unified L2 cache shared by two or four cores * Integrated single channel memory controller supporting 64bit DDR3L * 3.1 mm2 area per core ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]