Amalgamation Property
   HOME
*





Amalgamation Property
In the mathematical field of model theory, the amalgamation property is a property of collections of structures that guarantees, under certain conditions, that two structures in the collection can be regarded as substructures of a larger one. This property plays a crucial role in Fraïssé's theorem, which characterises classes of finite structures that arise as ages of countable homogeneous structures. The diagram of the amalgamation property appears in many areas of mathematical logic. Examples include in modal logic as an incestual accessibility relation, and in lambda calculus as a manner of reduction having the Church–Rosser property. Definition An ''amalgam'' can be formally defined as a 5-tuple (''A,f,B,g,C'') such that ''A,B,C'' are structures having the same signature, and ''f: A'' → ''B, g'': ''A'' → ''C'' are ''embeddings''. Recall that ''f: A'' → ''B'' is an ''embedding'' if ''f'' is an injective morphism which in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amalgamation Property
In the mathematical field of model theory, the amalgamation property is a property of collections of structures that guarantees, under certain conditions, that two structures in the collection can be regarded as substructures of a larger one. This property plays a crucial role in Fraïssé's theorem, which characterises classes of finite structures that arise as ages of countable homogeneous structures. The diagram of the amalgamation property appears in many areas of mathematical logic. Examples include in modal logic as an incestual accessibility relation, and in lambda calculus as a manner of reduction having the Church–Rosser property. Definition An ''amalgam'' can be formally defined as a 5-tuple (''A,f,B,g,C'') such that ''A,B,C'' are structures having the same signature, and ''f: A'' → ''B, g'': ''A'' → ''C'' are ''embeddings''. Recall that ''f: A'' → ''B'' is an ''embedding'' if ''f'' is an injective morphism which in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: in simple terms, a function f of a variable y, where y itself is a function of another variable x, may be written as a function of x. This is the pullback of f by the function y. f(y(x)) \equiv g(x) It is such a fundamental process that it is often passed over without mention. However, it is not just functions that can be "pulled back" in this sense. Pullbacks can be applied to many other objects such as differential forms and their cohomology classes; see * Pullback (differential geometry) * Pullback (cohomology) Fiber-product The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joint Embedding Property
In universal algebra and model theory, a class of structures ''K'' is said to have the joint embedding property if for all structures ''A'' and ''B'' in ''K'', there is a structure ''C'' in ''K'' such that both ''A'' and ''B'' have embeddings into ''C''. It is one of the three properties used to define the age of a structure. A first-order theory has the joint embedding property if the class of its models of has the joint embedding property. Chang, C. C.; Keisler, H. Jerome (2012). Model Theory (Third edition ed.). Dover Publications. pp. 672 pages. A complete theory has the joint embedding property. Conversely a model-complete theory with the joint embedding property is complete. A similar but different notion to the joint embedding property is the amalgamation property. To see the difference, first consider the class ''K'' (or simply the set) containing three models with linear orders, ''L''1 of size one, ''L''2 of size two, and ''L''3 of size three. This class ''K'' has the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pushout (category Theory)
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms ''f'' : ''Z'' → ''X'' and ''g'' : ''Z'' → ''Y'' with a common domain. The pushout consists of an object ''P'' along with two morphisms ''X'' → ''P'' and ''Y'' → ''P'' that complete a commutative square with the two given morphisms ''f'' and ''g''. In fact, the defining universal property of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are P = X \sqcup_Z Y and P = X +_Z Y. The pushout is the categorical dual of the pullback. Universal property Explicitly, the pushout of the morphisms ''f'' and ''g'' consists of an object ''P'' and two morphisms ''i''1 : ''X'' → ''P'' and ''i''2 : ''Y'' → ''P'' such that the diagram : commutes and such that (' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Span (category Theory)
In category theory, a span, roof or correspondence is a generalization of the notion of relation between two objects of a category. When the category has all pullbacks (and satisfies a small number of other conditions), spans can be considered as morphisms in a category of fractions. The notion of a span is due to Nobuo Yoneda (1954) and Jean Bénabou (1967). Formal definition A span is a diagram of type \Lambda = (-1 \leftarrow 0 \rightarrow +1), i.e., a diagram of the form Y \leftarrow X \rightarrow Z. That is, let Λ be the category (-1 ← 0 → +1). Then a span in a category ''C'' is a functor ''S'' : Λ → ''C''. This means that a span consists of three objects ''X'', ''Y'' and ''Z'' of ''C'' and morphisms ''f'' : ''X'' → ''Y'' and ''g'' : ''X'' → ''Z'': it is two maps with common ''domain''. The colimit of a span is a pushout. Examples * If ''R'' is a relation between sets ''X'' and ''Y'' (i.e. a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joint Embedding Property
In universal algebra and model theory, a class of structures ''K'' is said to have the joint embedding property if for all structures ''A'' and ''B'' in ''K'', there is a structure ''C'' in ''K'' such that both ''A'' and ''B'' have embeddings into ''C''. It is one of the three properties used to define the age of a structure. A first-order theory has the joint embedding property if the class of its models of has the joint embedding property. Chang, C. C.; Keisler, H. Jerome (2012). Model Theory (Third edition ed.). Dover Publications. pp. 672 pages. A complete theory has the joint embedding property. Conversely a model-complete theory with the joint embedding property is complete. A similar but different notion to the joint embedding property is the amalgamation property. To see the difference, first consider the class ''K'' (or simply the set) containing three models with linear orders, ''L''1 of size one, ''L''2 of size two, and ''L''3 of size three. This class ''K'' has the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Product
In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from ''G'' and ''H'' into a group ''K'' factor uniquely through a homomorphism from to ''K''. Unless one of the groups ''G'' and ''H'' is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators). The free product is the coproduct in the category of groups. That is, the free product plays the same role in group theory that disjoint union plays in set theory, or that the direct sum plays in module theory. Even if the groups are commutative, their free product is not, unless one of the two groups is the trivial grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importance o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Group
In mathematics, the free group ''F''''S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1''t'', but ''s'' ≠ ''t''−1 for ''s'',''t'',''u'' ∈ ''S''). The members of ''S'' are called generators of ''F''''S'', and the number of generators is the rank of the free group. An arbitrary group ''G'' is called free if it is isomorphic to ''F''''S'' for some subset ''S'' of ''G'', that is, if there is a subset ''S'' of ''G'' such that every element of ''G'' can be written in exactly one way as a product of finitely many elements of ''S'' and their inverses (disregarding trivial variations such as ''st'' = ''suu''−1''t''). A related but different notion is a free abelian group; both notions are particular instances of a free object from universal algebra. As such, free groups are defined by their universal property. History Free ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]