Span (category Theory)
In category theory, a span, roof or correspondence is a generalization of the notion of relation between two objects of a category. When the category has all pullbacks (and satisfies a small number of other conditions), spans can be considered as morphisms in a category of fractions. The notion of a span is due to Nobuo Yoneda (1954) and Jean Bénabou (1967). Formal definition A span is a diagram of type \Lambda = (-1 \leftarrow 0 \rightarrow +1), i.e., a diagram of the form Y \leftarrow X \rightarrow Z. That is, let Λ be the category (-1 ← 0 → +1). Then a span in a category ''C'' is a functor ''S'' : Λ → ''C''. This means that a span consists of three objects ''X'', ''Y'' and ''Z'' of ''C'' and morphisms ''f'' : ''X'' → ''Y'' and ''g'' : ''X'' → ''Z'': it is two maps with common ''domain''. The colimit of a span is a pushout. Examples * If ''R'' is a relation between sets ''X'' and ''Y'' (i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pushout (category Theory)
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms ''f'' : ''Z'' → ''X'' and ''g'' : ''Z'' → ''Y'' with a common domain. The pushout consists of an object ''P'' along with two morphisms ''X'' → ''P'' and ''Y'' → ''P'' that complete a commutative square with the two given morphisms ''f'' and ''g''. In fact, the defining universal property of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are P = X \sqcup_Z Y and P = X +_Z Y. The pushout is the categorical dual of the pullback. Universal property Explicitly, the pushout of the morphisms ''f'' and ''g'' consists of an object ''P'' and two morphisms ''i''1 : ''X'' → ''P'' and ''i''2 : ''Y'' → ''P'' such that the diagram : commutes and such that (' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dagger Compact Category
In category theory, a branch of mathematics, dagger compact categories (or dagger compact closed categories) first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations (that is, Tannakian category, Tannakian categories). They also appeared in the work of John Baez and James Dolan as an instance of semistrict ''k''-tuply monoidal category, monoidal n-category, ''n''-categories, which describe general topological quantum field theories, for ''n'' = 1 and ''k'' = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics. Overview Dagger compact categories can be used to express and verify some fundamental quantum computing, quantum information protocols, namely: quantum teleportation, teleportation, logic gate teleportation and quantum teleportation, entanglement swapping, and standard notions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subcategory
In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, a subcategory of ''C'' is a category obtained from ''C'' by "removing" some of its objects and arrows. Formal definition Let ''C'' be a category. A subcategory ''S'' of ''C'' is given by *a subcollection of objects of ''C'', denoted ob(''S''), *a subcollection of morphisms of ''C'', denoted hom(''S''). such that *for every ''X'' in ob(''S''), the identity morphism id''X'' is in hom(''S''), *for every morphism ''f'' : ''X'' → ''Y'' in hom(''S''), both the source ''X'' and the target ''Y'' are in ob(''S''), *for every pair of morphisms ''f'' and ''g'' in hom(''S'') the composite ''f'' o ''g'' is in hom(''S'') whenever it is defined. These conditions ensure that ''S'' is a category in its own right: its collection of objects is ob(''S'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cobordism
In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French '' bord'', giving ''cobordism'') of a manifold. Two manifolds of the same dimension are ''cobordant'' if their disjoint union is the ''boundary'' of a compact manifold one dimension higher. The boundary of an (''n'' + 1)-dimensional manifold ''W'' is an ''n''-dimensional manifold ∂''W'' that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed by René Thom for smooth manifolds (i.e., differentiable), but there are now also versions for piecewise linear and topological manifolds. A ''cobordism'' between manifolds ''M'' and ''N'' is a compact manifold ''W'' whose boundary is the disjoint union of ''M'' and ''N'', \part ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. One is most often interested in the case where the category J is a small or even fin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Equivalence (homotopy Theory)
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated homotopy category of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms. It is a useful observation that the associated homotopy category depends only on the weak equivalences, not on the fibrations and cofibrations. Topological spaces Model categories were defined by Quillen as an axiomatization of homotopy theory that applies to topological spaces, but also to many other categories in algebra and geometry. The example that started the subject is the category of topological spaces with Serre fibrations as fibrations and weak homotopy equivalen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Category
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', ' fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes (derived category theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic ''K''-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results. Motivation Model categories can provide a natural setting for homotopy theory: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of simplicial sets. Another model category is the category of chain complexes of ''R''-modules for a commutative ring ''R''. Homotopy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Colimit
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. One is most often interested in the case where the category J is a small or even finite category ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |