HOME
*





Alternating Multilinear Map
In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a module over a commutative ring. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space. Definition Let R be a commutative ring and V, W be modules over R. A multilinear map of the form f\colon V^n \to W is said to be alternating if it satisfies the following equivalent conditions: # whenever there exists 1 \leq i \leq n-1 such that x_i = x_ then f(x_1,\ldots,x_n) = 0.. # whenever there exists 1 \leq i \neq j \leq n such that x_i = x_j then f(x_1,\ldots,x_n) = 0.. Vector spaces Let V, W be vector spaces over the same field. Then a multilinear map of the fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V and w_1, w_2 \in W, then B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w) and B(v, w_1 + w_2) = B(v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functions And Mappings
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous function" in topology, a "linear transformation" in linear algebra, etc. Some au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetrization
In mathematics, symmetrization is a process that converts any function in n variables to a symmetric function in n variables. Similarly, antisymmetrization converts any function in n variables into an antisymmetric function. Two variables Let S be a set and A be an additive abelian group. A map \alpha : S \times S \to A is called a if \alpha(s,t) = \alpha(t,s) \quad \text s, t \in S. It is called an if instead \alpha(s,t) = - \alpha(t,s) \quad \text s, t \in S. The of a map \alpha : S \times S \to A is the map (x,y) \mapsto \alpha(x,y) + \alpha(y,x). Similarly, the or of a map \alpha : S \times S \to A is the map (x,y) \mapsto \alpha(x,y) - \alpha(y,x). The sum of the symmetrization and the antisymmetrization of a map \alpha is 2 \alpha. Thus, away from 2, meaning if 2 is invertible, such as for the real numbers, one can divide by 2 and express every function as a sum of a symmetric function and an anti-symmetric function. The symmetrization of a symmetric map is its do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multilinear Form
In abstract algebra and multilinear algebra, a multilinear form on a vector space V over a field K is a map :f\colon V^k \to K that is separately ''K''-linear in each of its ''k'' arguments. More generally, one can define multilinear forms on a module over a commutative ring. The rest of this article, however, will only consider multilinear forms on finite-dimensional vector spaces. A multilinear ''k''-form on V over \mathbf is called a (covariant) ''k''-tensor, and the vector space of such forms is usually denoted \mathcal^k(V) or \mathcal^k(V). Tensor product Given a ''k''-tensor f\in\mathcal^k(V) and an ''ℓ''-tensor g\in\mathcal^\ell(V), a product f\otimes g\in\mathcal^(V), known as the tensor product, can be defined by the property : (f\otimes g)(v_1,\ldots,v_k,v_,\ldots, v_)=f(v_1,\ldots,v_k)g(v_,\ldots, v_), for all v_1,\ldots,v_\in V. The tensor product of multilinear forms is not commutative; however it is bilinear and associative: : f\otimes(ag_1+bg_2)=a(f\ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multilinear Map
In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function :f\colon V_1 \times \cdots \times V_n \to W\text where V_1,\ldots,V_n and W are vector spaces (or modules over a commutative ring), with the following property: for each i, if all of the variables but v_i are held constant, then f(v_1, \ldots, v_i, \ldots, v_n) is a linear function of v_i. A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, a multilinear map of ''k'' variables is called a ''k''-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra. If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating ''k''-linear maps. The latter coincide if the underlying ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multilinear Algebra
Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p''-vectors and multivectors with Grassmann algebras. Origin In a vector space of dimension ''n'', normally only vectors are used. However, according to Hermann Grassmann and others, this presumption misses the complexity of considering the structures of pairs, triplets, and general multi-vectors. With several combinatorial possibilities, the space of multi-vectors has 2''n'' dimensions. The abstract formulation of the determinant is the most immediate application. Multilinear algebra also has applications in the mechanical study of material response to stress and strain with various moduli of elasticity. This practical reference led to the use of the word tensor, to describe the elements of the multilinear space. The extra structure in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Map (mathematics)
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a " continuous function" in topology, a "linear transformation" in linear algebra, etc. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V and w_1, w_2 \in W, then B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w) and B(v, w_1 + w_2) = B(v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Algebra
In mathematics, an alternating algebra is a -graded algebra for which for all nonzero homogeneous elements and (i.e. it is an anticommutative algebra) and has the further property that for every homogeneous element of odd degree. Examples * The differential forms on a differentiable manifold form an alternating algebra. * The exterior algebra is an alternating algebra. * The cohomology ring of a topological space is an alternating algebra. Properties * The algebra formed as the direct sum of the homogeneous subspaces of even degree of an anticommutative algebra is a subalgebra contained in the centre of , and is thus commutative. * An anticommutative algebra over a (commutative) base ring in which 2 is not a zero divisor is alternating. See also * Alternating multilinear map * Exterior algebra * Graded-symmetric algebra In algebra, given a commutative ring ''R'', the graded-symmetric algebra of a graded ''R''-module ''M'' is the quotient of the tensor algebra of ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]