Multilinear algebra is a subfield of
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
that extends the methods of
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrices.
...
. Just as linear algebra is built on the concept of a
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
and develops the theory of
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s, multilinear algebra builds on the concepts of
''p''-vectors and multivectors with
Grassmann algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is a ...
s.
Origin
In a vector space of
dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
''n'', normally only vectors are used. However, according to
Hermann Grassmann
Hermann Günther Grassmann (german: link=no, Graßmann, ; 15 April 1809 – 26 September 1877) was a German polymath known in his day as a linguist and now also as a mathematician. He was also a physicist, general scholar, and publisher. His mat ...
and others, this presumption misses the complexity of considering the structures of pairs, triplets, and general
multi-vectors. With several combinatorial possibilities, the space of multi-vectors has 2
''n'' dimensions. The
abstract formulation of the determinant is the most immediate application. Multilinear algebra also has applications in the mechanical study of material response to stress and strain with various moduli of elasticity. This practical reference led to the use of the word
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
, to describe the elements of the multilinear space. The extra structure in a multilinear space has led it to play an important role in various studies in higher mathematics. Though Grassmann started the subject in 1844 with his ''Ausdehnungslehre'', which was also republished in 1862, his work was to find acceptance, as ordinary linear algebra provided sufficient challenges to comprehension.
The topic of multilinear algebra is applied in some studies of
multivariate calculus
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving several variables, rather th ...
and
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s where the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as ...
comes into play. The
infinitesimal differentials of single variable calculus become
differential forms
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
in multivariate calculus, and their manipulation is done with
exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
.
After Grassmann, developments in multilinear algebra were made in 1872 by
Victor Schlegel
Victor Schlegel (4 March 1843 – 22 November 1905) was a German mathematician. He is remembered for promoting the geometric algebra of Hermann Grassmann and for a method of visualizing polytopes called Schlegel diagrams.
In the nineteenth centur ...
when he published the first part of his ''System der Raumlehre'', and by
Elwin Bruno Christoffel
Elwin Bruno Christoffel (; 10 November 1829 – 15 March 1900) was a German mathematician and physicist. He introduced fundamental concepts of differential geometry, opening the way for the development of tensor calculus, which would later provid ...
. A major advance in multilinear algebra came in the work of
Gregorio Ricci-Curbastro
Gregorio Ricci-Curbastro (; 12January 1925) was an Italian mathematician. He is most famous as the discoverer of tensor calculus.
With his former student Tullio Levi-Civita, he wrote his most famous single publication, a pioneering work on the ...
and
Tullio Levi-Civita
Tullio Levi-Civita, (, ; 29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on absolute differential calculus (tensor calculus) and its applications to the theory of relativity, but who also made significa ...
(see references). It was the ''absolute differential calculus'' form of multilinear algebra that
Marcel Grossmann
Marcel Grossmann (April 9, 1878 – September 7, 1936) was a Swiss mathematician and a friend and classmate of Albert Einstein. Grossmann was a member of an old Swiss family from Zurich. His father managed a textile factory. He became a Profe ...
and
Michele Besso
Michele Angelo Besso (Riesbach, 25 May 1873 – Geneva, 15 March 1955) was a Swiss-Italian engineer best known for working closely with Albert Einstein.
Biography
Besso was born in Riesbach from a family of Italian Jewish (Sephardi) descent. H ...
introduced to
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
. The publication in 1915 by Einstein of
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
explaining the
precession of the perihelion of Mercury
Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bendi ...
, established multilinear algebra and tensors as physically important mathematics.
Use in algebraic topology
Around the middle of the 20th century the study of tensors was reformulated more abstractly. The
Bourbaki group's treatise ''Multilinear Algebra'' was especially influential—in fact, the term ''multilinear algebra'' may have originated there.
One reason at the time was a new area of application,
homological algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
. The development of
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
during the 1940s gave additional incentive for the development of a purely algebraic treatment of the
tensor product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W ...
. The computation of the
homology groups
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
of the
product
Product may refer to:
Business
* Product (business), an item that serves as a solution to a specific consumer problem.
* Product (project management), a deliverable or set of deliverables that contribute to a business solution
Mathematics
* Produ ...
of two
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
s involves the tensor product; but only in the simplest cases, such as a
torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle.
If the axis of revolution does not tou ...
, is it directly calculated in that fashion (see
Künneth theorem
In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künn ...
). The topological phenomena were subtle enough to need better foundational concepts; technically speaking, the
Tor functor
In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to con ...
s had to be defined.
The material to organize was quite extensive, including also ideas going back to
Hermann Grassmann
Hermann Günther Grassmann (german: link=no, Graßmann, ; 15 April 1809 – 26 September 1877) was a German polymath known in his day as a linguist and now also as a mathematician. He was also a physicist, general scholar, and publisher. His mat ...
, the ideas from the theory of
differential form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
s that had led to
de Rham cohomology, as well as more elementary ideas such as the
wedge product
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converti ...
that generalizes the
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is ...
.
The resulting rather severe write-up of the topic, by Bourbaki, entirely rejected one approach in vector calculus (the
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
route, that is, in the general case, the relation with
Lie groups
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
), and instead, applied a novel approach using
category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, with the Lie group approach viewed as a separate matter. Since this leads to a much cleaner treatment, there was probably no going back in purely mathematical terms. (Strictly, the
universal property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
approach was invoked; this is somewhat more general than category theory, and the relationship between the two as alternate ways was also being clarified, at the same time.)
Indeed, what was done is almost precisely to explain that ''tensor spaces'' are the constructions required to reduce multilinear problems to linear problems. This purely algebraic attack conveys no geometric intuition.
By re-expressing problems in terms of multilinear algebra, there is a clear and well-defined "best solution": the constraints the solution exerts are exactly those needed in practice. In general there is no need to invoke any ''ad hoc'' construction, geometric idea, or recourse to co-ordinate systems. In the category-theoretic jargon, everything is entirely ''
natural
Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are p ...
''.
Topics in multilinear algebra
The subject matter of multilinear algebra has evolved less than the presentation down the years. Here are further pages centrally relevant to it:
*
Bilinear operator
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.
Definition
Vector spaces
Let V, W ...
*
Component-free treatment of tensors
In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or ...
*
Cramer's rule
*
Dual space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
*
Einstein notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
*
Exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
*
Exterior derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
*
Inner product
In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two ve ...
*
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
*
Levi-Civita symbol
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the parity of a permutation, sign of a permutation of the n ...
*
Metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
*
Mixed tensor
In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript ( ...
*
Multilinear map
In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function
:f\colon V_1 \times \cdots \times V_n \to W\text
where V_1,\ldots,V_n and W are ...
*
Multilinear form
In abstract algebra and multilinear algebra, a multilinear form on a vector space V over a field K is a map
:f\colon V^k \to K
that is separately ''K''-linear in each of its ''k'' arguments. More generally, one can define multilinear forms on ...
*
Symmetric algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal ...
,
Symmetric power In mathematics, the ''n''-th symmetric power of an object ''X'' is the quotient of the ''n''-fold product X^n:=X \times \cdots \times X by the permutation action of the symmetric group \mathfrak_n.
More precisely, the notion exists at least in the ...
*
Symmetric tensor
In mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:
:T(v_1,v_2,\ldots,v_r) = T(v_,v_,\ldots,v_)
for every permutation ''σ'' of the symbols Alternatively, a symmetric tensor of orde ...
*
Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
*
Tensor algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being ...
,
Free algebra
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the po ...
*
Tensor contraction
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the natural pairing of a finite-dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tens ...
*
Geometric Algebra
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the ge ...
There is also a
glossary of tensor theory
This is a glossary of tensor theory. For expositions of tensor theory from different points of view, see:
* Tensor
* Tensor (intrinsic definition)
* Application of tensor theory in engineering science
For some history of the abstract theory see ...
.
Applications
Some of the ways in which multilinear algebra concepts are applied:
*
Classical treatment of tensors
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
*
Dyadic tensor In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.
There are numerous ways to multiply two Euclidean vectors. The dot product takes in two v ...
*
Bra–ket notation
*
Geometric algebra
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the ge ...
*
Clifford algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperc ...
*
Pseudoscalar
In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not.
Any scalar product between a pseudovector and an ordinary vector is a pseudoscalar. The ...
*
Pseudovector
In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its o ...
*
Spinor
In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight ...
*
Outer product
In linear algebra, the outer product of two coordinate vector
In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An ea ...
*
Hypercomplex number
In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers.
The study of hypercomplex numbers in the late 19th century forms the basis of modern group represent ...
*
Multilinear subspace learning
Multilinear subspace learning is an approach to dimensionality reduction.M. A. O. Vasilescu, D. Terzopoulos (2003"Multilinear Subspace Analysis of Image Ensembles" "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVP ...
References
*
*
*
*
{{tensors