HOME
*





Aleksandrov–Rassias Problem
The theory of isometries in the framework of Banach spaces has its beginning in a paper by Stanisław Mazur and Stanisław M. Ulam in 1932. They proved the Mazur–Ulam theorem stating that every isometry of a normed real linear space onto a normed real linear space is a linear mapping up to translation. In 1970, Aleksandr Danilovich Aleksandrov Aleksandr Danilovich Aleksandrov (russian: Алекса́ндр Дани́лович Алекса́ндров, alternative transliterations: ''Alexandr'' or ''Alexander'' (first name), and ''Alexandrov'' (last name)) (4 August 1912 – 27 July 19 ... asked whether the existence of a single conservative distance for a mapping implies that it is an isometry. Themistocles M. Rassias posed the following problem: Aleksandrov–Rassias Problem. If and are normed linear spaces and if is a continuous and/or surjective mapping such that whenever vectors and in satisfy \lVert x-y \rVert=1, then \lVert T(X)-T(Y) \rVert=1 (the distance one pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection. Isometries are often used in constructions where one space i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Spaces
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanisław Mazur
Stanisław Mieczysław Mazur (1 January 1905, Lwów – 5 November 1981, Warsaw) was a Polish mathematician and a member of the Polish Academy of Sciences. Mazur made important contributions to geometrical methods in linear and nonlinear functional analysis and to the study of Banach algebras. He was also interested in summability theory, infinite games and computable functions. Lwów and Warsaw Mazur was a student of Stefan Banach at University of Lwów. His doctorate, under Banach's supervision, was awarded in 1935. Mazur, with Juliusz Schauder, was an Invited Speaker of the ICM in 1936 in Oslo. Mazur was a close collaborator with Banach at Lwów and was a member of the Lwów School of Mathematics, where he participated in the mathematical activities at the Scottish Café. On 6 November 1936, he posed the " basis problem" of determining whether every Banach space has a Schauder basis, with Mazur promising a "live goose" as a reward: 37 years later and in a ceremony that wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stanislaw Ulam
Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, invented the Monte Carlo method of computation, and suggested nuclear pulse propulsion. In pure and applied mathematics, he proved some theorems and proposed several conjectures. Born into a wealthy Polish Jewish family, Ulam studied mathematics at the Lwów Polytechnic Institute, where he earned his PhD in 1933 under the supervision of Kazimierz Kuratowski and Włodzimierz Stożek. In 1935, John von Neumann, whom Ulam had met in Warsaw, invited him to come to the Institute for Advanced Study in Princeton, New Jersey, for a few months. From 1936 to 1939, he spent summers in Poland and academic years at Harvard University in Cambridge, Massachusetts, where he worked to establish import ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mazur–Ulam Theorem
In mathematics, the Mazur–Ulam theorem states that if V and W are normed spaces over R and the mapping :f\colon V\to W is a surjective isometry, then f is affine. It was proved by Stanisław Mazur and Stanisław Ulam in response to a question raised by Stefan Banach. For strictly convex spaces the result is true, and easy, even for isometries which are not necessarily surjective. In this case, for any u and v in V, and for any t in ,1/math>, write r=\, u-v\, _V=\, f(u)-f(v)\, _W and denote the closed ball In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defin ... of radius around by \bar B(v,R). Then tu+(1-t)v is the unique element of \bar B(v,tr)\cap \bar B(u,(1-t)r), so, since f is injective, f(tu+(1-t)v) is the unique element of f\bigl(\bar B(v,tr)\cap \bar B(u,(1-t)r\bigr) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Vector Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Mapping
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Aleksandr Danilovich Aleksandrov
Aleksandr Danilovich Aleksandrov (russian: Алекса́ндр Дани́лович Алекса́ндров, alternative transliterations: ''Alexandr'' or ''Alexander'' (first name), and ''Alexandrov'' (last name)) (4 August 1912 – 27 July 1999) was a Soviet/Russian mathematician, physicist, philosopher and mountaineer. Personal Life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was a headmaster of a secondary school in St Petersburg and his mother a teacher at said school, thus the young Alekandrov spent a majority of his childhood in the city. His family was old Russian nobility—students noted ancestral portraits which hung in his office. His sisters were Soviet botanist Vera Danilovna Aleksandrov (RU) and Maria Danilovna Aleksandrova, author of the first monograph on gerontopsychology in the USSR. In 1937, he married a student of the Faculty of Physics, Marianna Leonidovna Georg. Together they had two children: Daria (b. 1948) and Daniil (R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Themistocles M
Themistocles (; grc-gre, Θεμιστοκλῆς; c. 524–459 BC) was an Athenian politician and general. He was one of a new breed of non-aristocratic politicians who rose to prominence in the early years of the Athenian democracy. As a politician, Themistocles was a populist, having the support of lower-class Athenians, and generally being at odds with the Athenian nobility. Elected archon in 493 BC, he convinced the polis to increase the naval power of Athens, a recurring theme in his political career. During the first Persian invasion of Greece he fought at the Battle of Marathon (490 BC) and was possibly one of the ten Athenian ''strategoi'' (generals) in that battle. In the years after Marathon, and in the run-up to the second Persian invasion of 480–479 BC, Themistocles became the most prominent politician in Athens. He continued to advocate for a strong Athenian Navy, and in 483 BC he persuaded the Athenians to build a fleet of 200 triremes; these proved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Geometry
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]