2,520
2520 (two thousand five hundred ndtwenty) is the natural number following 2519 and preceding 2521. In mathematics 2520 is: *the smallest number divisible by all integers from one to ten, i.e., it is their least common multiple. *half of 7! ( 5040), meaning 7 factorial, or 1\times 2\times 3\times 4\times 5\times 6\times 7. *the product of five consecutive numbers, namely 3\times 4\times 5\times 6\times 7. *the 7th superior highly composite number. *the 7th colossally abundant number. *the 18th highly composite number. *the last highly composite number that is half of the next highly composite number. *the last highly composite number that is a divisor of all following highly composite numbers. *palindromic in undecimal (199111) and a repdigit in bases 55, 59, and 62. *a Harshad number in all bases between binary and hexadecimal. *the aliquot sum of 1080. *part of the 53-aliquot tree. The complete aliquot sequence starting at 1080 is 1080, 2520, 6840, 16560, 41472, 82311, 27441, 12 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Undecimal
Undecimal (also known as unodecimal, undenary, and the base 11 numeral system) is a Positional notation, positional numeral system that uses 11 (number), eleven as its Radix, base. While no known society counts by elevens, two are purported to have done so: the Māori people, Māori (one of the two Polynesians, Polynesian peoples of New Zealand) and the Pangwa, Pañgwa (a Bantu languages, Bantu-speaking people of Tanzania). The idea of counting by elevens remains of interest for its relation to a traditional method of tally-counting practiced in Polynesia. During the French Revolution, undecimal was briefly considered as a possible basis for the reformed system of measurement. Today, undecimal numerals have applications in computer science, technology, and the International Standard Book Number system. They also occasionally feature in works of popular fiction. Any numerical system with a base greater than ten requires one or more new digits; "in an undenary system (base eleven) th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliquot Sequence
In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0. Definition and overview The aliquot sequence starting with a positive integer can be defined formally in terms of the sum-of-divisors function or the aliquot sum function in the following way: \begin s_0 &= k \\ pts_n &= s(s_) = \sigma_1(s_) - s_ \quad \text \quad s_ > 0 \\ pts_n &= 0 \quad \text \quad s_ = 0 \\ pts(0) &= \text \end If the condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these sequences are usually 0 or 6. For example, the aliquot sequence of 10 is because: \begin \sigma_1(10) -10 &= 5 + 2 + 1 = 8, \\ pt\sigma_1(8) - 8 &= 4 + 2 + 1 = 7, \\ pt\sigma_1(7) - 7 &= 1, \\ pt\sigma_1(1) - 1 &= 0. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliquot Sum
In number theory, the aliquot sum of a positive integer is the sum of all proper divisors of , that is, all divisors of other than itself. That is, s(n)=\sum_ d \, . It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number. Examples For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are , and 6, so the aliquot sum of 12 is 16 i.e. (). The values of for are: :0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, ... Characterization of classes of numbers The aliquot sum function can be used to characterize several notable classes of numbers: *1 is the only number whose aliquot sum is 0. *A number is prime if and only if its aliquot sum is 1. *The aliquot sum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexadecimal
Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen. Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of binary code, binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble). For example, an 8-bit byte is two hexadecimal digits and its value can be written as to in hexadecimal. In mathematics, a subscript is typically used to specify the base. For example, the decimal value would be expressed in hexadecimal as . In programming, several notations denote hexadecimal numbers, usually involving a prefi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Number
A binary number is a number expressed in the Radix, base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" (zero) and "1" (one). A ''binary number'' may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an integer by a power of two. The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computer, computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thoma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harshad Number
In mathematics, a harshad number (or Niven number) in a given radix, number base is an integer that is divisible by the digit sum, sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Because being a Harshad number is determined based on the base the number is expressed in, a number can be a Harshad number many times over. So-called Trans-Harshad numbers are Harshad numbers in every base. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. Definition Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Repdigit
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes (which are repdigits when represented in binary). Any such number can be represented as follows \underbrace_ = \frac Where nn is the concatenation of n with n. k the number of concatenated n. nn can be represented mathematically as n\cdot\left(10^+1\right) for n = 23 and k = 5, the formula will look like this \frac = \frac = \underbrace_ However, 2323232323 is not a repdigit. Also, any number can be decomposed into the sum and difference of the repdigit numbers. For example 3453455634 = 3333333333 + (111111111 + (99999 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Highly Composite Number
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If ''d''(''n'') denotes the number of divisors of a positive integer ''n'', then a positive integer ''N'' is highly composite if ''d''(''N'') > ''d''(''n'') for all ''n'' < ''N''. For example, 6 is highly composite because ''d''(6)=4, and for ''n''=1,2,3,4,5, you get ''d''(''n'')=1,2,2,3,2, respectively, which are all less than 4. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. Ramanujan wrote a paper on highly composite numbers in 1915. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2519 (number)
2000 (two thousand) is a natural number following 1999 and preceding 2001. It is: :*the highest number expressible using only two unmodified characters in Roman numerals (MM) :*an Achilles number :*smallest four digit eban number :*the sum of all the nban numbers in the sequence Selected numbers in the range 2001–2999 2001 to 2099 * 2001 – sphenic number * 2002 – palindromic number in decimal, base 76, 90, 142, and 11 other non-trivial bases * 2003 – Sophie Germain prime and the smallest prime number in the 2000s * 2004 – Area of the 24tcrystagon* 2005 – A vertically symmetric number * 2006 – number of subsets of with relatively prime elements * 2007 – 22007 + 20072 is prime * 2008 – number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to 3 * 2009 = 74 − 73 − 72 * 2010 – number of compositions of 12 into relatively prime parts * 2011 – sexy prime with 2017, sum of eleven consecutive primes: 2011 = 157 + 163 + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Colossally Abundant Number
In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number. Formally, a number is said to be colossally abundant if there is an such that for all , :\frac\geq\frac where denotes the sum-of-divisors function. The first 15 colossally abundant numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 are also the first 15 superior highly composite numbers, but neither set is a subset of the other. History Colossally abundant numbers were first studied by Ramanujan and his ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superior Highly Composite Number
In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power. For any possible exponent, whichever integer has the greatest ratio is a superior highly composite number. It is a stronger restriction than that of a highly composite number, which is defined as having more divisors than any smaller positive integer. The first ten superior highly composite numbers and their factorization are listed. For a superior highly composite number there exists a positive real number such that for all natural numbers we have \frac\geq\frac where , the divisor function, denotes the number of divisors of . The term was coined by Ramanujan (1915). For example, the number with the most divisors per square root of the number itself is 12; this can be demonstrated using some highly composite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |