HOME
*



picture info

Superior Highly Composite Number
In mathematics, a superior highly composite number is a natural number which has the highest ratio of its number of divisors to ''some'' positive power of itself than any other number. It is a stronger restriction than that of a highly composite number, which is defined as having more divisors than any smaller positive integer. The first 10 superior highly composite numbers and their factorization are listed. For a superior highly composite number ''n'' there exists a positive real number ''ε'' such that for all natural numbers ''k'' smaller than ''n'' we have :\frac\geq\frac and for all natural numbers ''k'' larger than ''n'' we have :\frac>\frac where ''d(n)'', the divisor function, denotes the number of divisors of ''n''. The term was coined by Ramanujan (1915). For example, the number with the most divisors per square root of the number itself is 12; this can be demonstrated using some highly composites near 12. \frac\approx 1.414, \frac=1.5, \frac\approx 1.633, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




50,000
50,000 (fifty thousand) is the natural number that comes after 49,999 and before 50,001 . Selected numbers in the range 50001–59999 50001 to 50999 * 50069 = 11 + 22 + 33 + 44 + 55 + 66 * 50400 = highly composite number * 50625 = 154, smallest fourth power that can be expressed as the sum of only five distinct fourth powers, palindromic in base 14 (1464114) * 50653 = 373, palindromic in base 6 (10303016) 51000 to 51999 * 51076 = 2262, palindromic in base 15 (1020115) * 51641 = Markov number * 51984 = 2282 = 373 + 113. the smallest square to the sum of only five distinct fourth powers. 52000 to 52999 * 52488 = 3-smooth number * 52633 = Carmichael number 53000 to 53999 * 53016 = pentagonal pyramidal number * 53361 = 2312 sum of the cubes of the first 21 positive integers 54000 to 54999 * 54205 = Zeisel number * 54688 = 2-automorphic number * 54748 = narcissistic number * 54872 = 383, palindromic in base 9 (832389) * 54901 = chiliagonal number 55000 to 55999 * 55296 = 3-smooth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degree (angle)
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane (mathematics), plane angle in which one Turn (geometry), full rotation is 360 degrees. It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI Brochure, SI brochure as an Non-SI units mentioned in the SI, accepted unit. Because a full rotation equals 2 radians, one degree is equivalent to radians. History The original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the ecliptic path over the course of the year, seems to advance in its path by approximately one degree each day. Some ancient calendars, such as the Iranian calendar, Persian calendar and the Babylonian calendar, used 360 days for a year. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hundred (word)
The long hundred, also known as the great hundred or twelfty, is the number 120 (in base-10 Arabic numerals) that was referred to as "hundred" in Germanic languages prior to the 15th century, and is now known as one hundred twenty, or six score. The number was simply described as hundred and translated into Latin in Germanic-speaking countries as (Roman numeral C), but the qualifier "long" is now added because English now uses the word "hundred" exclusively to refer to the number of five score (100) instead. The long hundred was 120, but the long thousand was reckoned decimally as 10 long hundreds (1200). English unit The hundred ( la, centena) was an English unit of measurement used in the production, sale and taxation of various items in the medieval kingdom of England. The value was often different from 100 units, mostly because of the continued medieval use of the Germanic long hundred of 120. The unit's use as a measure of weight is now described as a hundredweight. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sexagesimal
Sexagesimal, also known as base 60 or sexagenary, is a numeral system with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form—for measuring time, angles, and geographic coordinates. The number 60, a superior highly composite number, has twelve factors, namely 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60, of which 2, 3, and 5 are prime numbers. With so many factors, many fractions involving sexagesimal numbers are simplified. For example, one hour can be divided evenly into sections of 30 minutes, 20 minutes, 15 minutes, 12 minutes, 10 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, and 1 minute. 60 is the smallest number that is divisible by every number from 1 to 6; that is, it is the lowest common multiple of 1, 2, 3, 4, 5, and 6. ''In this article, all sexagesimal digits are represented as decimal numbers, except where otherwise noted. For e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duodecimal
The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead written as "10" in duodecimal (meaning "1 dozen and 0 units", instead of "1 ten and 0 units"), whereas the digit string "12" means "1 dozen and 2 units" (decimal 14). Similarly, in duodecimal, "100" means "1  gross", "1000" means "1 great gross", and "0.1" means "1 twelfth" (instead of their decimal meanings "1 hundred", "1 thousand", and "1 tenth", respectively). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Senary
A senary () numeral system (also known as base-6, heximal, or seximal) has six as its base. It has been adopted independently by a small number of cultures. Like decimal, it is a semiprime, though it is unique as the product of the only two consecutive numbers that are both prime (2 and 3). As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to senary. In turn, the senary logic refers to an extension of Jan Łukasiewicz's and Stephen Cole Kleene's ternary logic systems adjusted to explain the logic of statistical tests and missing data patterns in sciences using empirical methods. Formal definition The standard set of digits in senary is given by \mathcal_6 = \lbrace 0, 1, 2, 3, 4, 5\rbrace, with a linear order 0 < 1 < 2 < 3 < 4 < 5. Let \mathcal_6^* be the

picture info

Binary Number
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas Harriot, Juan Caramuel y Lobkowitz, and Gottfried Leibniz. However, systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, and India. Leibniz was specifica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radix
In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is ten, because it uses the ten digits from 0 through 9. In any standard positional numeral system, a number is conventionally written as with ''x'' as the string of digits and ''y'' as its base, although for base ten the subscript is usually assumed (and omitted, together with the pair of parentheses), as it is the most common way to express value. For example, (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four. Etymology ''Radix'' is a Latin word for "root". ''Root'' can be considered a synonym for ''base,'' in the arithmetical sense. In numeral systems In the system with radix 13, for example, a string of digits such as 398 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Colossally Abundant Number
In mathematics, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Formally, a number ''n'' is said to be colossally abundant if there is an ε > 0 such that for all ''k'' > 1, :\frac\geq\frac where ''σ'' denotes the sum-of-divisors function. All colossally abundant numbers are also superabundant numbers, but the converse is not true. The first 15 colossally abundant numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 are also the first 15 superior highly composite numbers, but neither set is a subset of the other. History Colossally abundant numbers were first studied by Ramanujan and his findings were intended to be included in his 1915 paper on highly composite numbers. Unfortunately, the publisher of the journal to which Ramanujan submitted his work, the London Mathematical Society, was in financ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]