Colossally Abundant Number
In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number. Formally, a number is said to be colossally abundant if there is an such that for all , :\frac\geq\frac where denotes the sum-of-divisors function. The first 15 colossally abundant numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 are also the first 15 superior highly composite numbers, but neither set is a subset of the other. History Colossally abundant numbers were first studied by Ramanujan and his ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigma Function .
{{mathdab ...
In mathematics, by sigma function one can mean one of the following: * The sum-of-divisors function σ''a''(''n''), an arithmetic function * Weierstrass sigma function, related to elliptic functions * Rado's sigma function, see busy beaver See also sigmoid function A sigmoid function is any mathematical function whose graph of a function, graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula :\sigma(x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
360 (number)
360 (three hundred [and] sixty) is the natural number following 359 (number), 359 and preceding 361 (number), 361. In mathematics * 360 is the 13th highly composite number and one of only seven numbers such that no number less than twice as much has more divisors; the others are 1, 2, 6, 12 (number), 12, 60 (number), 60, and 2520 (number), 2520 . *360 is also the 6th superior highly composite number, the 6th colossally abundant number, a refactorable number, a 5-smooth number, and a Harshad number in Base ten, decimal since the sum of its digits (9) is a divisor of 360. *360 is divisible by the number of its divisors (24 (number), 24), and it is the smallest number divisible by every natural number from 1 to 10, except 7 (number), 7. Furthermore, one of the divisors of 360 is 72 (number), 72, which is the number of Prime number, primes below it. *360 is the sum of twin primes (179 (number), 179 + 181 (number), 181) and the sum of four consecutive Power of three, powers of thre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leonidas Alaoglu
Leonidas (''Leon'') Alaoglu (; March 19, 1914 – August 1981) was a mathematician best known for Alaoglu's theorem on the weak-star compactness of the closed unit ball in the dual of a normed space, also known as the Banach–Alaoglu theorem. Life and work Alaoglu was born in Red Deer, Alberta to Greek parents. He received his BS in 1936, Master's in 1937, and PhD in 1938 (at the age of 24), all from the University of Chicago. His dissertation, written under the direction of Lawrence M. Graves, was on ''Weak topologies of normed linear spaces'' and establishes Alaoglu's theorem. The Bourbaki–Alaoglu theorem is a generalization of this result by Bourbaki to dual topologies. After some years teaching at Pennsylvania State College, Harvard University and Purdue University, in 1944 he became an operations analyst for the United States Air Force. From 1953 to 1981, he worked as a senior scientist in operations research at the Lockheed Corporation in Burbank, Califo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sufficiently Large
In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it does not have the said property across all its ordered instances, but will after some instances have passed. The use of the term "eventually" can be often rephrased as "for sufficiently large numbers", and can be also extended to the class of properties that apply to elements of any ordered set (such as sequences and subsets of \mathbb). Notation The general form where the phrase eventually (or sufficiently large) is found appears as follows: :P is ''eventually'' true for x (P is true for ''sufficiently large'' x), where \forall and \exists are the universal and existential quantifiers, which is actually a shorthand for: :\exists a \in \mathbb such that P is true \forall x \ge a or somewhat more formally: :\exists a \in \mathbb: \forall x \in \mathbb:x \ge a \Rightarrow P(x) This does not necessarily mean that any particular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robin's Inequality
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand for "''d'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named. The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Millennium Prize Problems of the Clay Mathematics Institute, which offers US$1 million for a solution to any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields. The Riemann zeta function ''ζ''(''s'') is a function whose argument ''s'' may be any complex numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's Learned society, learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College London, University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Highly Composite Number
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If ''d''(''n'') denotes the number of divisors of a positive integer ''n'', then a positive integer ''N'' is highly composite if ''d''(''N'') > ''d''(''n'') for all ''n'' < ''N''. For example, 6 is highly composite because ''d''(6)=4, and for ''n''=1,2,3,4,5, you get ''d''(''n'')=1,2,2,3,2, respectively, which are all less than 4. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. Ramanujan wrote a paper on highly composite numbers in 1915. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Srinivasa Ramanujan
Srinivasa Ramanujan Aiyangar (22 December 188726 April 1920) was an Indian mathematician. Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable. Ramanujan initially developed his own mathematical research in isolation. According to Hans Eysenck, "he tried to interest the leading professional mathematicians in his work, but failed for the most part. What he had to show them was too novel, too unfamiliar, and additionally presented in unusual ways; they could not be bothered". Seeking mathematicians who could better understand his work, in 1913 he began a mail correspondence with the English mathematician G. H. Hardy at the University of Cambridge, England. Recognising Ramanujan's work as extraordinary, Hardy arranged ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |