Harshad Number
In mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. Definition Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
1729 (number)
1729 is the natural number following 1728 and preceding 1730. It is a taxicab number, and is variously known as Ramanujan's number and the Ramanujan-Hardy number, after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan in hospital. He related their conversation: The two different ways are: : 1729 = 13 + 123 = 93 + 103 The quotation is sometimes expressed using the term "positive cubes", since allowing negative perfect cubes (the cube of a negative integer) gives the smallest solution as 91 (which is a divisor of 1729; 1991 = 1729). :91 = 63 + (−5)3 = 43 + 33 Numbers that are the smallest number that can be expressed as the sum of two cubes in ''n'' distinct ways have been dubbed "taxicab numbers". The number was also found in one of Ramanujan's notebooks dated years before the incident, and was noted by Frénicle de Bessy in 1657. A commemorative plaque now appears at the site of the Ramanujan-Hardy inciden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
30 (number)
30 (thirty) is the natural number following 29 and preceding 31. In mathematics 30 is an even, composite, pronic number. With 2, 3, and 5 as its prime factors, it is a regular number and the first sphenic number, the smallest of the form , where is a prime greater than 3. It has an aliquot sum of 42, which is the second sphenic number. It is also: * A semiperfect number, since adding some subsets of its divisors (e.g., 5, 10 and 15) equals 30. * A primorial. * A Harshad number in decimal. * Divisible by the number of prime numbers ( 10) below it. * The largest number such that all coprimes smaller than itself, except for 1, are prime. * The sum of the first four squares, making it a square pyramidal number. * The number of vertices in the Tutte–Coxeter graph. * The measure of the central angle and exterior angle of a dodecagon, which is the petrie polygon of the 24-cell. * The number of sides of a triacontagon, which in turn is the petrie polygon of the 120-cell ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
27 (number)
27 (twenty-seven; Roman numeral XXVII) is the natural number following 26 and preceding 28. In mathematics * Twenty-seven is a cube of 3: 3^3=3\times 3\times 3. 27 is also 23 (see tetration). There are exactly 27 straight lines on a smooth cubic surface, which give a basis of the fundamental representation of the E6 Lie algebra. 27 is also a decagonal number. * In decimal, it is the first composite number not divisible by any of its digits. * It is the radix (base) of the septemvigesimal positional numeral system. * 27 is the only positive integer that is 3 times the sum of its digits. * In a prime reciprocal magic square of the multiples of , the magic constant is 27. * In the Collatz conjecture (aka the "3n+1 conjecture"), a starting value of 27 requires 111 steps to reach 1, more than any number smaller than it. * The unique simple formally real Jordan algebra, the exceptional Jordan algebra of self-adjoint 3 by 3 matrices of quaternions, is 27-dimensional. * In dec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
24 (number)
24 (twenty-four) is the natural number following 23 and preceding 25. The SI prefix for 1024 is yotta (Y), and for 10−24 (i.e., the reciprocal of 1024) yocto (y). These numbers are the largest and smallest number to receive an SI prefix to date. In mathematics 24 is an even composite number, with 2 and 3 as its distinct prime factors. It is the first number of the form 2''q'', where ''q'' is an odd prime. It is the smallest number with exactly eight positive divisors: 1, 2, 3, 4, 6, 8, 12, and 24; thus, it is a highly composite number, having more divisors than any smaller number. Furthermore, it is an abundant number, since the sum of its proper divisors ( 36) is greater than itself, as well as a superabundant number. In number theory and algebra *24 is the smallest 5- hemiperfect number, as it has a half-integer abundancy index: *:1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 = × 24 *24 is a semiperfect number, since adding up all the proper divisors of 24 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
21 (number)
21 (twenty-one) is the natural number following 20 and preceding 22. The current century is the 21st century AD, under the Gregorian calendar. In mathematics 21 is: * a composite number, its proper divisors being 1, 3 and 7, and a deficient number as the sum of these divisors is less than the number itself. * a Fibonacci number as it is the sum of the preceding terms in the sequence, 8 and 13. * the fifth Motzkin number. * a triangular number, because it is the sum of the first six natural numbers (1 + 2 + 3 + 4 + 5 + 6 = 21). * an octagonal number. * a Padovan number, preceded by the terms 9, 12, 16 (it is the sum of the first two of these) in the padovan sequence. * a Blum integer, since it is a semiprime with both its prime factors being Gaussian primes. * the sum of the divisors of the first 5 positive integers (i.e., 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5)) * the smallest non-trivial example of a Fibonacci number whose digits are Fibonacci numbers and whose digit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
20 (number)
20 (twenty; Roman numeral XX) is the natural number following 19 and preceding 21. A group of twenty units may also be referred to as a score. In mathematics *20 is a pronic number. *20 is a tetrahedral number as 1, 4, 10, 20. *20 is the basis for vigesimal number systems. *20 is the third composite number to be the product of a squared prime and a prime, and also the second member of the (''2''2)''q'' family in this form. *20 is the smallest primitive abundant number. *An icosahedron has 20 faces. A dodecahedron has 20 vertices. *20 can be written as the sum of three Fibonacci numbers uniquely, i.e. 20 = 13 + 5 + 2. *20 is the number of moves (quarter or half turns) required to optimally solve a Rubik's Cube in the worst case. (e.g. the newspaper headline "Scores of Typhoon Survivors Flown to Manila")."CBS News"''Scores of Typhoon Survivors Flown to Manila'' (November 2013) In sports * Twenty20 is a form of limited overs cricket where each team plays only 20 overs. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
18 (number)
18 (eighteen) is the natural number following 17 and preceding 19. In mathematics * Eighteen is a composite number, its divisors being 1, 2, 3, 6 and 9. Three of these divisors (3, 6 and 9) add up to 18, hence 18 is a semiperfect number. Eighteen is the first inverted square-prime of the form ''p''·''q''2. * In base ten, it is a Harshad number. * It is an abundant number, as the sum of its proper divisors is greater than itself (1+2+3+6+9 = 21). It is known to be a solitary number, despite not being coprime to this sum. * It is the number of one-sided pentominoes. * It is the only number where the sum of its written digits in base 10 (1+8 = 9) is equal to half of itself (18/2 = 9). * It is a Fine number. In science Chemistry * Eighteen is the atomic number of argon. * Group 18 of the periodic table is called the noble gases. * The 18-electron rule is a rule of thumb in transition metal chemistry for characterising and predicting the stability of metal complexes. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
10 (number)
10 (ten) is the even natural number following 9 and preceding 11. Ten is the base of the decimal numeral system, by far the most common system of denoting numbers in both spoken and written language. It is the first double-digit number. The reason for the choice of ten is assumed to be that humans have ten fingers ( digits). Anthropology Usage and terms * A collection of ten items (most often ten years) is called a decade. * The ordinal adjective is ''decimal''; the distributive adjective is ''denary''. * Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten. * To reduce something by one tenth is to ''decimate''. (In ancient Rome, the killing of one in ten soldiers in a cohort was the punishment for cowardice or mutiny; or, one-tenth of the able-bodied men in a village as a form of retribution, thus causing a labor shortage and threat of starvation in agrarian societies.) Other * The number of kingdoms in Five Dyn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
9 (number)
9 (nine) is the natural number following and preceding . Evolution of the Arabic digit In the beginning, various Indians wrote a digit 9 similar in shape to the modern closing question mark without the bottom dot. The Kshatrapa, Andhra and Gupta started curving the bottom vertical line coming up with a -look-alike. The Nagari continued the bottom stroke to make a circle and enclose the 3-look-alike, in much the same way that the sign @ encircles a lowercase ''a''. As time went on, the enclosing circle became bigger and its line continued beyond the circle downwards, as the 3-look-alike became smaller. Soon, all that was left of the 3-look-alike was a squiggle. The Arabs simply connected that squiggle to the downward stroke at the middle and subsequent European change was purely cosmetic. While the shape of the glyph for the digit 9 has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender, as, for example, in . The mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
8 (number)
8 (eight) is the natural number following 7 and preceding 9. In mathematics 8 is: * a composite number, its proper divisors being , , and . It is twice 4 or four times 2. * a power of two, being 2 (two cubed), and is the first number of the form , being an integer greater than 1. * the first number which is neither prime nor semiprime. * the base of the octal number system, which is mostly used with computers. In octal, one digit represents three bits. In modern computers, a byte is a grouping of eight bits, also called an wikt:octet, octet. * a Fibonacci number, being plus . The next Fibonacci number is . 8 is the only positive Fibonacci number, aside from 1, that is a perfect cube. * the only nonzero perfect power that is one less than another perfect power, by Catalan conjecture, Mihăilescu's Theorem. * the order of the smallest non-abelian group all of whose subgroups are normal. * the dimension of the octonions and is the highest possible dimension of a normed divisio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
7 (number)
7 (seven) is the natural number following 6 and preceding 8. It is the only prime number preceding a cube. As an early prime number in the series of positive integers, the number seven has greatly symbolic associations in religion, mythology, superstition and philosophy. The seven Classical planets resulted in seven being the number of days in a week. It is often considered lucky in Western culture and is often seen as highly symbolic. Unlike Western culture, in Vietnamese culture, the number seven is sometimes considered unlucky. It is the first natural number whose pronunciation contains more than one syllable. Evolution of the Arabic digit In the beginning, Indians wrote 7 more or less in one stroke as a curve that looks like an uppercase vertically inverted. The western Ghubar Arabs' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arabs developed the digit fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |