Plutonium Tetrafluoride Color Square
   HOME

TheInfoList



OR:

Plutonium is a
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Pu and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
94. It is a silvery-gray
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
that
tarnish Tarnish is a thin layer of corrosion that forms over copper, brass, aluminum, magnesium, neodymium and other similar metals as their outermost layer undergoes a chemical reaction. Tarnish does not always result from the sole effects of oxygen in ...
es when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
s and four
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
s. It reacts with
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
,
halogen The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would ...
s,
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
,
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, and
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
. When exposed to moist air, it forms
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s and
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
s that can expand the sample up to 70% in volume, which in turn flake off as a powder that is
pyrophoric A substance is pyrophoric (from , , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are organolithium compounds and triethylb ...
. It is
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
and can accumulate in
bone A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, ...
s, which makes the handling of plutonium dangerous. Plutonium was first synthesized and isolated in late 1940 and early 1941, by
deuteron Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium atomic nucleus, nucleus (deuteron) contains one proton and ...
bombardment of
uranium-238 Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it i ...
in the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
. First,
neptunium-238 Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be s ...
(
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
2.1 days) was synthesized, which then
beta-decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron t ...
ed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
had been named after the planet
Uranus Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
and
neptunium Neptunium is a chemical element; it has chemical symbol, symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar Syste ...
after the planet
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
, element 94 was named after
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of Trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Su ...
, which at the time was also considered a planet. Wartime secrecy prevented the University of California team from publishing its discovery until 1948. Plutonium is the element with the highest atomic number known to occur in nature. Trace quantities arise in natural uranium deposits when uranium-238 captures neutrons emitted by decay of other uranium-238 atoms. The heavy isotope
plutonium-244 Plutonium-244 (Pu) is an isotope of plutonium that has a half-life of 81.3 million years. This is longer than any other isotope of plutonium and longer than any other known isotope of an element beyond bismuth, except for the three naturally abu ...
has a half-life long enough that extreme trace quantities should have survived primordially (from the Earth's formation) to the present, but so far experiments have not yet been sensitive enough to detect it. Both
plutonium-239 Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
and
plutonium-241 Plutonium-241 ( or Pu-241) is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes (especially 239Pu), 241Pu is fissile, with a neutron absorption cross section about one-third greater than t ...
are
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
, meaning they can sustain a
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
, leading to applications in
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s and
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s.
Plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. ...
has a high rate of
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
, raising the
neutron flux The neutron flux is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total distance travelled by all free neutrons per unit time and volume. Equivalently, it can be defined as the number of neutrons travelling ...
of any sample containing it. The presence of plutonium-240 limits a plutonium sample's usability for weapons or its quality as reactor fuel, and the percentage of plutonium-240 determines its
grade Grade most commonly refers to: * Grading in education, a measurement of a student's performance by educational assessment (e.g. A, pass, etc.) * A designation for students, classes and curricula indicating the number of the year a student has reach ...
(
weapons-grade Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuc ...
, fuel-grade, or reactor-grade).
Plutonium-238 Plutonium-238 ( or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage ...
has a half-life of 87.7 years and emits
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s. It is a heat source in
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
s, which are used to power some
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
. Plutonium isotopes are expensive and inconvenient to separate, so particular isotopes are usually manufactured in specialized reactors. Producing plutonium in useful quantities for the first time was a major part of the
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
during
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
that developed the first atomic bombs. The
Fat Man "Fat Man" (also known as Mark III) was the design of the nuclear weapon the United States used for seven of the first eight nuclear weapons ever detonated in history. It is also the most powerful design to ever be used in warfare. A Fat Man ...
bombs used in the
Trinity The Trinity (, from 'threefold') is the Christian doctrine concerning the nature of God, which defines one God existing in three, , consubstantial divine persons: God the Father, God the Son (Jesus Christ) and God the Holy Spirit, thr ...
nuclear test Nuclear weapons tests are experiments carried out to determine the performance of nuclear weapons and the effects of their explosion. Nuclear testing is a sensitive political issue. Governments have often performed tests to signal strength. Bec ...
in July 1945, and in the
bombing of Nagasaki On 6 and 9 August 1945, the United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki, respectively, during World War II. The aerial bombings killed between 150,000 and 246,000 people, most of whom were civil ...
in August 1945, had plutonium cores.
Human radiation experiments Since the discovery of ionizing radiation, a number of human radiation experiments have been performed to understand the effects of ionizing radiation and radioactive contamination on the human body, specifically with the element plutonium. Ex ...
studying plutonium were conducted without
informed consent Informed consent is an applied ethics principle that a person must have sufficient information and understanding before making decisions about accepting risk. Pertinent information may include risks and benefits of treatments, alternative treatme ...
, and several
criticality accident A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, divergent chain reaction, or simply critical. Any such event involves the uninten ...
s, some lethal, occurred after the war. Disposal of plutonium waste from
nuclear power plant A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power st ...
s and dismantled nuclear weapons built during the
Cold War The Cold War was a period of global Geopolitics, geopolitical rivalry between the United States (US) and the Soviet Union (USSR) and their respective allies, the capitalist Western Bloc and communist Eastern Bloc, which lasted from 1947 unt ...
is a nuclear-proliferation and environmental concern. Other sources of
plutonium in the environment Since the mid-20th century, plutonium in the environment has been primarily produced by human activity. The first plants to produce plutonium for use in Cold War atomic bombs were the Hanford nuclear site in Washington, and the Mayak nuclear p ...
are
fallout Nuclear fallout is residual radioactive material that is created by the reactions producing a nuclear explosion. It is initially present in the radioactive cloud created by the explosion, and "falls out" of the cloud as it is moved by the ...
from many above-ground nuclear tests, which are now
banned A ban is a formal or informal prohibition of something. Bans are formed for the prohibition of activities within a certain political territory. Some bans in commerce are referred to as embargoes. ''Ban'' is also used as a verb similar in meaning ...
.


Characteristics


Physical properties

Plutonium, like most metals, has a bright silvery appearance at first, much like
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, but it oxidizes very quickly to a dull gray, though yellow and olive green are also reported. (public domain text) At
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
plutonium is in its α (''alpha'') form. This
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
is about as hard and brittle as gray cast iron. When plutonium is
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
ed with other metals, the high-temperature δ
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
is stabilized at room temperature, making it soft and ductile. Unlike most metals, it is not a good conductor of
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
or
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
. It has a low
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
() and an unusually high
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
(). This gives a large range of temperatures (over 2,500 kelvin wide) at which plutonium is liquid, but this range is neither the greatest among all actinides nor among all metals, with neptunium theorized to have the greatest range in both instances. The low melting point as well as the reactivity of the native metal compared to the oxide leads to plutonium oxides being a preferred form for applications such as nuclear fission reactor fuel (
MOX-fuel Mixed oxide fuel (MOX fuel) is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enric ...
).
Alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
, the release of a high-energy
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
nucleus, is the most common form of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
for plutonium. A 5 kg mass of Pu contains about atoms. With a half-life of 24,100 years, about of its atoms decay each second by emitting a 5.157 
MeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
alpha particle. This amounts to 9.68 watts of power. Heat produced by the deceleration of these alpha particles makes it warm to the touch. due to its much shorter half life heats up to much higher temperatures and glows red hot with
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific continuous spectr ...
if left without external heating or cooling. This heat has been used in
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
s (see below). The
resistivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity i ...
of plutonium at room temperature is very high for a metal, and it gets even higher with lower temperatures, which is unusual for metals. This trend continues down to 100  K, below which resistivity rapidly decreases for fresh samples. Resistivity then begins to increase with time at around 20 K due to radiation damage, with the rate dictated by the isotopic composition of the sample. Because of self-irradiation, a sample of plutonium
fatigue Fatigue is a state of tiredness (which is not sleepiness), exhaustion or loss of energy. It is a signs and symptoms, symptom of any of various diseases; it is not a disease in itself. Fatigue (in the medical sense) is sometimes associated wit ...
s throughout its crystal structure, meaning the ordered arrangement of its atoms becomes disrupted by radiation with time. Self-irradiation can also lead to annealing which counteracts some of the fatigue effects as temperature increases above 100 K. Unlike most materials, plutonium increases in density when it melts, by 2.5%, but the liquid metal exhibits a linear decrease in density with temperature. Near the melting point, the liquid plutonium has very high
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
and
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
compared to other metals.


Allotropes

Plutonium normally has six
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
s and forms a seventh (zeta, ζ) at high temperature within a limited pressure range. These allotropes, which are different structural modifications or forms of an element, have very similar internal energies but significantly varying densities and
crystal structure In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
s. This makes plutonium very sensitive to changes in temperature, pressure, or chemistry, and allows for dramatic volume changes following
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
s from one allotropic form to another. The densities of the different allotropes vary from 16.00 g/cm to 19.86 g/cm. The presence of these many allotropes makes machining plutonium very difficult, as it changes state very readily. For example, the α form exists at room temperature in unalloyed plutonium. It has machining characteristics similar to
cast iron Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
but changes to the plastic and malleable β (''beta'') form at slightly higher temperatures. The reasons for the complicated phase diagram are not entirely understood. The α form has a low-symmetry
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three Vector (geometric), vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in t ...
structure, hence its brittleness, strength, compressibility, and poor thermal conductivity. Plutonium in the δ (''delta'') form normally exists in the 310 °C to 452 °C range but is stable at room temperature when alloyed with a small percentage of
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
,
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
, or
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
, enhancing workability and allowing it to be welded. The δ form has more typical metallic character, and is roughly as strong and malleable as aluminium. In fission weapons, the explosive
shock wave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
s used to compress a plutonium core will also cause a transition from the usual δ phase plutonium to the denser α form, significantly helping to achieve
supercriticality In the operation of a nuclear reactor, criticality or critical state is the state in which a nuclear chain reaction is self-sustaining but not growing. Subcriticality or subcritical state is the state in which a nuclear chain reaction is not self ...
. The ε phase, the highest temperature solid allotrope, exhibits anomalously high atomic self-diffusion compared to other elements.


Nuclear fission

Plutonium is a radioactive
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
metal whose
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
,
plutonium-239 Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
, is one of the three primary
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
isotopes (
uranium-233 Uranium-233 ( or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a Nuclear fuel, reactor fuel. It has been used successfully ...
and
uranium-235 Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
are the other two);
plutonium-241 Plutonium-241 ( or Pu-241) is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes (especially 239Pu), 241Pu is fissile, with a neutron absorption cross section about one-third greater than t ...
is also highly fissile. To be considered fissile, an isotope's
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
must be able to break apart or fission when struck by a slow moving neutron and to release enough additional neutrons to sustain the
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
by splitting further nuclei. Pure plutonium-239 may have a multiplication factor (keff) larger than one, which means that if the metal is present in sufficient quantity and with an appropriate geometry (e.g., a sphere of sufficient size), it can form a
critical mass In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
. During fission, a fraction of the
nuclear binding energy Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is alwa ...
, which holds a nucleus together, is released as a large amount of
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
(much of the latter being quickly converted to thermal energy). Fission of a kilogram of plutonium-239 can produce an explosion equivalent to . It is this energy that makes plutonium-239 useful in
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s and reactors. The presence of the isotope
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. ...
in a sample limits its nuclear bomb potential, as Pu has a relatively high
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
rate (~440 fissions per second per gram; over 1,000 neutrons per second per gram), raising the background neutron levels and thus increasing the risk of predetonation. Plutonium is identified as either
weapons-grade Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuc ...
, fuel-grade, or reactor-grade based on the percentage of Pu that it contains. Weapons-grade plutonium contains less than 7% Pu. Fuel-grade plutonium contains 7%–19%, and power reactor-grade contains 19% or more Pu. Supergrade plutonium, with less than 4% of Pu, is used in
United States Navy The United States Navy (USN) is the naval warfare, maritime military branch, service branch of the United States Department of Defense. It is the world's most powerful navy with the largest Displacement (ship), displacement, at 4.5 millio ...
weapons stored near ship and submarine crews, due to its lower radioactivity.
Plutonium-238 Plutonium-238 ( or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage ...
is not fissile but can undergo nuclear fission easily with
fast neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
as well as alpha decay. All plutonium isotopes can be "bred" into fissile material with one or more
neutron absorption Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
s, whether followed by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
or not. This makes non-fissile isotopes of plutonium a
fertile material Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption. Naturally occurring fertile materials Naturally occurring fertile materials that can be converted into a fissile ...
.


Isotopes and nucleosynthesis

Twenty-two
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s of plutonium have been characterized, from 226Pu to 247Pu. The longest-lived are Pu, with a half-life of 80.8 million years; Pu, with a half-life of 373,300 years; and Pu, with a half-life of 24,110 years. All other isotopes have half-lives of less than 7,000 years. This element also has eight metastable states, though all have half-lives less than a second. Pu has been found in interstellar space and it has the longest half-life of any non-primordial radioisotope. The main decay modes of isotopes with mass numbers lower than the most stable isotope, Pu, are spontaneous fission and
alpha emission Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an atom ...
, mostly forming uranium (92
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s) and
neptunium Neptunium is a chemical element; it has chemical symbol, symbol Np and atomic number 93. A radioactivity, radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar Syste ...
(93 protons) isotopes as
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
s (neglecting the wide range of daughter nuclei created by fission processes). The main decay mode for isotopes heavier than Pu, along with Pu and Pu, is
beta emission In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron t ...
, forming
americium Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
isotopes (95 protons). Plutonium-241 is the parent isotope of the
neptunium series In nuclear science a decay chain refers to the predictable series of radioactive decay, radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radionuclide, Radioactive isotopes do not usually decay directly ...
, decaying to americium-241 via beta emission. Plutonium-238 and 239 are the most widely synthesized isotopes. Pu is synthesized via the following reaction using uranium (U) and neutrons (n) via beta decay (β) with neptunium (Np) as an intermediate: : + -> -> beta^- 3.5 \ \ce -> beta^- .3565 \ \ce d Neutrons from the fission of uranium-235 are captured by uranium-238 nuclei to form uranium-239; a
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
converts a neutron into a proton to form neptunium-239 (half-life 2.36 days) and another beta decay forms plutonium-239.
Egon Bretscher Egon Bretscher (23 May 1901 – 16 April 1973) was a Swiss-born British chemist and nuclear physicist and Head of the Nuclear Physics Division from 1948 to 1966 at the Atomic Energy Research Establishment, also known as Harwell Laboratory, in ...
working on the British
Tube Alloys Tube Alloys was the research and development programme authorised by the United Kingdom, with participation from Canada, to develop nuclear weapons during the Second World War. Starting before the Manhattan Project in the United States, the Bri ...
project predicted this reaction theoretically in 1940. Plutonium-238 is synthesized by bombarding uranium-238 with
deuteron Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium atomic nucleus, nucleus (deuteron) contains one proton and ...
s (D or H, the nuclei of heavy
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
) in the following reaction: :\begin \ce &\ce \\ &\ce \end where a deuteron hitting uranium-238 produces two neutrons and neptunium-238, which decays by emitting negative beta particles to form plutonium-238. Plutonium-238 can also be produced by
neutron irradiation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitti ...
of
neptunium-237 Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be ...
.


Decay heat and fission properties

Plutonium isotopes undergo radioactive decay, which produces
decay heat Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha particle, alpha, Beta particle, beta or gamma radiation is converted into the thermal movement ...
. Different isotopes produce different amounts of heat per mass. The decay heat is usually listed as watt/kilogram, or milliwatt/gram. In larger pieces of plutonium (e.g. a weapon pit) and inadequate heat removal the resulting self-heating may be significant.


Compounds and chemistry

At room temperature, pure plutonium is silvery in color but gains a tarnish when oxidized. The element displays four common ionic
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
s in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water ...
and one rare one: * Pu(III), as Pu3+ (blue lavender) * Pu(IV), as Pu4+ (yellow brown) * Pu(V), as (light pink) * Pu(VI), as (pink orange) * Pu(VII), as (green)—the heptavalent ion is rare. The color shown by plutonium solutions depends on both the oxidation state and the nature of the acid
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
. It is the acid anion that influences the degree of complexing—how atoms connect to a central atom—of the plutonium species. Additionally, the formal +2 oxidation state of plutonium is known in the complex (2.2.2-cryptand) uIICp″3 Cp″ = C5H3(SiMe3)2. Preparation of plutonium(VIII) compounds such as the volatile tetroxide has also been claimed, but their existence remains disputed. Metallic plutonium is produced by reacting plutonium tetrafluoride with
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
,
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
or
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
at 1200 °C. Metallic plutonium is attacked by
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
s,
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, and steam but not by
alkalis In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The a ...
and dissolves easily in concentrated hydrochloric, hydroiodic and
perchloric acid Perchloric acid is a mineral acid with the formula H Cl O4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxid ...
s. Molten metal must be kept in a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
or an inert atmosphere to avoid reaction with air. At 135 °C the metal will ignite in air and will explode if placed in
carbon tetrachloride Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also IUPAC nomenclature of inorganic chemistry, recognised by the IUPAC), is a chemical compound with the chemical formula CCl4. It is a n ...
. Plutonium is a reactive metal. In moist air or moist
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, the metal oxidizes rapidly, producing a mixture of
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s and
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
s. If the metal is exposed long enough to a limited amount of water vapor, a powdery surface coating of PuO2 is formed. Also formed is
plutonium hydride Plutonium hydride is a non-stoichiometric chemical compound with the formula PuH. It is one of two characterized hydrides of plutonium; the other is PuH.Gerd Meyer, 1991, Synthesis of Lanthanide and Actinide Compounds Springer, . PuH is non-stoich ...
but an excess of water vapor forms only PuO2. Plutonium shows enormous, and reversible, reaction rates with pure hydrogen, forming
plutonium hydride Plutonium hydride is a non-stoichiometric chemical compound with the formula PuH. It is one of two characterized hydrides of plutonium; the other is PuH.Gerd Meyer, 1991, Synthesis of Lanthanide and Actinide Compounds Springer, . PuH is non-stoich ...
. It also reacts readily with oxygen, forming PuO and PuO2 as well as intermediate oxides; plutonium oxide fills 40% more volume than plutonium metal. The metal reacts with the
halogen The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would ...
s, giving rise to compounds with the general formula PuX3 where X can be F, Cl, Br or I and PuF4 is also seen. The following oxyhalides are observed: PuOCl, PuOBr and PuOI. It will react with carbon to form PuC, nitrogen to form
PuN A pun, also known as a paronomasia in the context of linguistics, is a form of word play that exploits multiple meanings of a term, or of similar-sounding words, for an intended humorous or rhetorical effect. These ambiguities can arise from t ...
and
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
to form PuSi2. The
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
chemistry of plutonium complexes is typical for organoactinide species; a characteristic example of an organoplutonium compound is plutonocene. Computational chemistry methods indicate an enhanced
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
character in the plutonium-ligand bonding. Powders of plutonium, its hydrides and certain oxides like Pu2O3 are
pyrophoric A substance is pyrophoric (from , , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are organolithium compounds and triethylb ...
, meaning they can ignite spontaneously at ambient temperature and are therefore handled in an inert, dry atmosphere of nitrogen or argon. Bulk plutonium ignites only when heated above 400 °C. Pu2O3 spontaneously heats up and transforms into PuO2, which is stable in dry air, but reacts with water vapor when heated.
Crucible A crucible is a container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperat ...
s used to contain plutonium need to be able to withstand its strongly reducing properties.
Refractory metals Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definitions of which elements belong to this group di ...
such as
tantalum Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
and
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
along with the more stable oxides,
boride A boride is a compound between boron and a less electronegative element, for example silicon boride (SiB3 and SiB6). The borides are a very large group of compounds that are generally high melting and are covalent more than ionic in nature. Some b ...
s,
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
s,
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
s and
silicide A silicide is a type of chemical compound that combines silicon and a usually more electropositive element. Silicon is more electropositive than carbon. In terms of their physical properties, silicides are structurally closer to borides than t ...
s can tolerate this. Melting in an
electric arc furnace An electric arc furnace (EAF) is a Industrial furnace, furnace that heats material by means of an electric arc. Industrial arc furnaces range in size from small units of approximately one-tonne capacity (used in foundry, foundries for producin ...
can be used to produce small ingots of the metal without the need for a crucible.
Cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
is used as a chemical simulant of plutonium for development of containment, extraction, and other technologies.


Electronic structure

Plutonium is an element in which the 5f electrons are the transition border between delocalized and localized; it is therefore considered one of the most complex elements. The anomalous behavior of plutonium is caused by its electronic structure. The energy difference between the 6d and 5f subshells is very low. The size of the 5f shell is just enough to allow the electrons to form bonds within the lattice, on the very boundary between localized and bonding behavior. The proximity of energy levels leads to multiple low-energy electron configurations with near equal energy levels. This leads to competing 5fn7s2 and 5fn−16d17s2 configurations, which causes the complexity of its chemical behavior. The highly directional nature of 5f orbitals is responsible for directional covalent bonds in molecules and complexes of plutonium.


Alloys

Plutonium can form alloys and intermediate compounds with most other metals. Exceptions include lithium,
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
,
potassium Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
,
rubidium Rubidium is a chemical element; it has Symbol (chemistry), symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have ...
and
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
of the
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s; and
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
, calcium,
strontium Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
, and barium of the
alkaline earth metal The alkaline earth metals are six chemical elements in group (periodic table), group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar p ...
s; and
europium Europium is a chemical element; it has symbol Eu and atomic number 63. It is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. Europium is the most chemically reactive, least dense, and soft ...
and
ytterbium Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthani ...
of the
rare earth metal The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set o ...
s. Partial exceptions include the refractory metals
chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
,
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
,
niobium Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
, tantalum, and tungsten, which are soluble in liquid plutonium, but insoluble or only slightly soluble in solid plutonium. Gallium, aluminium, americium,
scandium Scandium is a chemical element; it has Symbol (chemistry), symbol Sc and atomic number 21. It is a silvery-white metallic d-block, d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the lantha ...
and cerium can stabilize δ-phase plutonium for room temperature.
Silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
,
indium Indium is a chemical element; it has Symbol (chemistry), symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are la ...
,
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
and
zirconium Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
allow formation of metastable δ state when rapidly cooled. High amounts of
hafnium Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...
,
holmium Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other ...
and
thallium Thallium is a chemical element; it has Symbol (chemistry), symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Che ...
also allows some retention of the δ phase at room temperature. Neptunium is the only element that can stabilize the α phase at higher temperatures. Plutonium alloys can be produced by adding a metal to molten plutonium. If the alloying metal is reductive enough, plutonium can be added in the form of oxides or halides. The δ phase plutonium–gallium alloy (PGA) and plutonium–aluminium alloy are produced by adding Pu(III) fluoride to molten gallium or aluminium, which has the advantage of avoiding dealing directly with the highly reactive plutonium metal. * PGA is used for stabilizing the δ phase of plutonium, avoiding the α-phase and α–δ related issues. Its main use is in pits of implosion bombs. * Plutonium–aluminium is an alternative to PGA. It was the original element considered for δ phase stabilization, but its tendency to react with the alpha particles and release neutrons reduces its usability for nuclear weapons. Plutonium–aluminium alloy can be also used as a component of
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
. * Plutonium–gallium–cobalt alloy (PuCoGa) is an
unconventional superconductor Unconventional superconductors are materials that display superconductivity which is not explained by the usual BCS theory or its extension, the Eliashberg theory. The pairing in unconventional superconductors may originate from some other mecha ...
, showing superconductivity below 18.5 K, an order of magnitude higher than the highest between
heavy fermion In materials science, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, the ...
systems, and has large critical current. * Plutonium–zirconium alloy can be used as
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
. * Plutonium–cerium and plutonium–cerium–cobalt alloys are used as nuclear fuels. * Plutonium–uranium, with about 15–30 mol.% plutonium, can be used as a nuclear fuel for fast breeder reactors. Its
pyrophoric A substance is pyrophoric (from , , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are organolithium compounds and triethylb ...
nature and high susceptibility to corrosion to the point of self-igniting or disintegrating after exposure to air require alloying with other components. Addition of aluminium, carbon or copper does not improve disintegration rates markedly, zirconium and iron alloys have better corrosion resistance but they disintegrate in several months in air as well. Addition of titanium and/or zirconium significantly increases the melting point of the alloy. * Plutonium–uranium–titanium and plutonium–uranium–zirconium were investigated for use as nuclear fuels. The addition of the third element increases corrosion resistance, reduces flammability, and improves ductility, fabricability, strength, and thermal expansion. Plutonium–uranium–molybdenum has the best corrosion resistance, forming a protective film of oxides, but titanium and zirconium are preferred for physics reasons. * Thorium–uranium–plutonium was investigated as a nuclear fuel for fast breeder reactors.


Occurrence

Trace amounts of plutonium-238, plutonium-239, plutonium-240, and plutonium-244 can be found in nature. Small traces of plutonium-239, a few parts per trillion, and its decay products are naturally found in some concentrated ores of uranium, such as the
natural nuclear fission reactor A natural nuclear fission reactor is a uranium deposit where self-sustaining nuclear chain reactions occur. The idea of a nuclear reactor existing ''in situ'' within an ore body moderated by groundwater was briefly explored by Paul Kuroda in 19 ...
in
Oklo Oklo is a region near Franceville in the Haut-Ogooué Province of Gabon. Several natural nuclear fission reactors were discovered in the uranium mines in the region in 1972. History Gabon was a French colony when prospectors from the Comm ...
,
Gabon Gabon ( ; ), officially the Gabonese Republic (), is a country on the Atlantic coast of Central Africa, on the equator, bordered by Equatorial Guinea to the northwest, Cameroon to the north, the Republic of the Congo to the east and south, and ...
. The ratio of plutonium-239 to uranium at the Cigar Lake Mine uranium deposit ranges from to . These trace amounts of 239Pu originate in the following fashion: on rare occasions, 238U undergoes spontaneous fission, and in the process, the nucleus emits one or two free neutrons with some kinetic energy. When one of these neutrons strikes the nucleus of another 238U atom, it is absorbed by the atom, which becomes 239U. With a relatively short half-life, 239U decays to 239Np, which decays into 239Pu. Finally, exceedingly small amounts of plutonium-238, attributed to the extremely rare
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move cl ...
of uranium-238, have been found in natural uranium samples. Due to its relatively long half-life of about 80 million years, it was suggested that
plutonium-244 Plutonium-244 (Pu) is an isotope of plutonium that has a half-life of 81.3 million years. This is longer than any other isotope of plutonium and longer than any other known isotope of an element beyond bismuth, except for the three naturally abu ...
occurs naturally as a
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
, but early reports of its detection could not be confirmed. Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial 244Pu. However, its long half-life ensured its circulation across the solar system before its
extinction Extinction is the termination of an organism by the death of its Endling, last member. A taxon may become Functional extinction, functionally extinct before the death of its last member if it loses the capacity to Reproduction, reproduce and ...
, and indeed, evidence of the spontaneous fission of extinct 244Pu has been found in meteorites. The former presence of 244Pu in the early Solar System has been confirmed, since it manifests itself today as an excess of its daughters, either 232 Th (from the alpha decay pathway) or
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
isotopes (from its
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
). The latter are generally more useful, because the chemistries of thorium and plutonium are rather similar (both are predominantly tetravalent) and hence an excess of thorium would not be strong evidence that some of it was formed as a plutonium daughter. 244Pu has the longest half-life of all transuranic nuclides and is produced only in the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
in
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e and colliding
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s; when nuclei are ejected from these events at high speed to reach Earth, 244Pu alone among transuranic nuclides has a long enough half-life to survive the journey, and hence tiny traces of live interstellar 244Pu have been found in the deep sea floor. Because 240Pu also occurs in the
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
of 244Pu, it must thus also be present in
secular equilibrium In nuclear physics, secular equilibrium is a situation in which the quantity of a radioactive isotope remains constant because its production rate (e.g., due to decay of a parent isotope) is equal to its decay rate. In radioactive decay Secular e ...
, albeit in even tinier quantities. Astrophysical detection of plutonium is extremely limited, but is found in the spectrum of the extremely chemically peculiar Przybylski's Star. Minute traces of plutonium are usually found in the human body due to the 550 atmospheric and underwater
nuclear tests Nuclear weapons tests are experiments carried out to determine the performance of nuclear weapons and the effects of Nuclear explosion, their explosion. Nuclear testing is a sensitive political issue. Governments have often performed tests to si ...
that have been carried out, and to a small number of major
nuclear accidents A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, la ...
. Most atmospheric and underwater nuclear testing was stopped by the Limited Test Ban Treaty in 1963, which of the nuclear powers was signed and ratified by the United States, United Kingdom and
Soviet Union The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
. France would continue atmospheric nuclear testing until 1974 and China would continue atmospheric nuclear testing until 1980. All subsequent nuclear testing was conducted underground.


History


Discovery

Enrico Fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian and naturalized American physicist, renowned for being the creator of the world's first artificial nuclear reactor, the Chicago Pile-1, and a member of the Manhattan Project ...
and a team of scientists at the University of Rome reported that they had discovered element 94 in 1934. Fermi called the element ''
hesperium ''Ausenium'' (atomic symbol Ao) and ''Hesperium'' (atomic symbol Es) were the names initially assigned to the transuranic elements with atomic numbers 93 and 94, respectively. The discovery of the elements, now discredited, was made by Enrico Fermi ...
'' and mentioned it in his Nobel Lecture in 1938. The sample actually contained products of
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
, primarily
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
and
krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
. Nuclear fission, discovered in Germany in 1938 by
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
and
Fritz Strassmann Friedrich Wilhelm Strassmann (; 22 February 1902 – 22 April 1980) was a German chemist who, with Otto Hahn in December 1938, identified the element barium as a product of the bombardment of uranium with neutrons. Their observation was the key ...
, was unknown at the time. Plutonium (specifically, plutonium-238) was first produced, isolated and then chemically identified between December 1940 and February 1941 by Glenn T. Seaborg,
Edwin McMillan Edwin Mattison McMillan (September 18, 1907 – September 7, 1991) was an American physicist credited with being the first to produce a transuranium element, neptunium. For this, he shared the 1951 Nobel Prize in Chemistry with Glenn Seaborg. ...
,
Emilio Segrè Emilio Gino Segrè ( ; ; 1 February 1905 – 22 April 1989) was an Italian-American nuclear physicist and radiochemist who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was award ...
, Joseph W. Kennedy, and Arthur Wahl by deuteron bombardment of uranium in the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
at the
Berkeley Radiation Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a federally funded research and development center in the hills of Berkeley, California, United States. Established in 1931 by the University of California (UC), the laboratory is spo ...
at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
. Neptunium-238 was created directly by the bombardment but decayed by beta emission with a half-life of a little over two days, which indicated the formation of element 94. The first bombardment took place on December 14, 1940, and the new element was first identified through oxidation on the night of February 23–24, 1941. A paper documenting the discovery was prepared by the team and sent to the journal ''
Physical Review ''Physical Review'' is a peer-reviewed scientific journal. The journal was established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the Ame ...
'' in March 1941, but publication was delayed until a year after the end of
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
due to security concerns. At the
Cavendish Laboratory The Cavendish Laboratory is the Department of Physics at the University of Cambridge, and is part of the School of Physical Sciences. The laboratory was opened in 1874 on the New Museums Site as a laboratory for experimental physics and is named ...
in
Cambridge Cambridge ( ) is a List of cities in the United Kingdom, city and non-metropolitan district in the county of Cambridgeshire, England. It is the county town of Cambridgeshire and is located on the River Cam, north of London. As of the 2021 Unit ...
, Egon Bretscher and Norman Feather realized that a slow neutron reactor fuelled with uranium would theoretically produce substantial amounts of plutonium-239 as a by-product. They calculated that element 94 would be fissile, and had the added advantage of being chemically different from uranium, and could easily be separated from it. McMillan had recently named the first transuranic element neptunium after the planet
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
, and suggested that element 94, being the next element in the series, be named for what was then considered the next planet,
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of Trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Su ...
.
Nicholas Kemmer Nicholas Kemmer (7 December 1911 – 21 October 1998) was a Russian-born nuclear physics, nuclear physicist working in Britain, who played an integral and leading edge role in United Kingdom's British nuclear weapons, nuclear programme, and was ...
of the Cambridge team independently proposed the same name, based on the same reasoning as the Berkeley team. Seaborg originally considered the name "plutium", but later thought that it did not sound as good as "plutonium". He chose the letters "Pu" as a joke, in reference to the interjection "P U" to indicate an especially disgusting smell, which passed without notice into the periodic table. Alternative names considered by Seaborg and others were "ultimium" or "extremium" because of the erroneous belief that they had found the last possible element on the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. Hahn and Strassmann, and independently
Kurt Starke Kurt Starke (1911 in Berlin – 19 January 2000) was a German radiochemist. During World War II, he worked on the German nuclear energy project, also known as the Uranium Club. He independently discovered the transuranic element neptunium. From ...
, were at this point also working on transuranic elements in Berlin. It is likely that Hahn and Strassmann were aware that plutonium-239 should be fissile. However, they did not have a strong neutron source. Element 93 was reported by Hahn and Strassmann, as well as Starke, in 1942. Hahn's group did not pursue element 94, likely because they were discouraged by McMillan and Abelson's lack of success in isolating it when they had first found element 93. However, since Hahn's group had access to the stronger cyclotron at Paris at this point, they would likely have been able to detect plutonium had they tried, albeit in tiny quantities (a few
becquerel The becquerel (; symbol: Bq) is the unit of radioactivity in the International System of Units (SI). One becquerel is defined as an activity of one per second, on average, for aperiodic activity events referred to a radionuclide. For applicatio ...
s).


Early research

The chemistry of plutonium was found to resemble uranium after a few months of initial study. Early research was continued at the secret
Metallurgical Laboratory The Metallurgical Laboratory (or Met Lab) was a scientific laboratory from 1942 to 1946 at the University of Chicago. It was established in February 1942 and became the Argonne National Laboratory in July 1946. The laboratory was established i ...
of the
University of Chicago The University of Chicago (UChicago, Chicago, or UChi) is a Private university, private research university in Chicago, Illinois, United States. Its main campus is in the Hyde Park, Chicago, Hyde Park neighborhood on Chicago's South Side, Chic ...
. On August 20, 1942, a trace quantity of this element was isolated and measured for the first time. About 50 micrograms of plutonium-239 combined with uranium and fission products was produced and only about 1 microgram was isolated. This procedure enabled chemists to determine the new element's atomic weight. On December 2, 1942, on a racket court under the west grandstand at the University of Chicago's Stagg Field, researchers headed by
Enrico Fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian and naturalized American physicist, renowned for being the creator of the world's first artificial nuclear reactor, the Chicago Pile-1, and a member of the Manhattan Project ...
achieved the first self-sustaining chain reaction in a graphite and uranium pile known as CP-1. Using theoretical information garnered from the operation of CP-1, DuPont constructed an air-cooled experimental production reactor, known as X-10, and a pilot chemical separation facility at Oak Ridge. The separation facility, using methods developed by Glenn T. Seaborg and a team of researchers at the Met Lab, removed plutonium from uranium irradiated in the X-10 reactor. Information from CP-1 was also useful to Met Lab scientists designing the water-cooled plutonium production reactors for Hanford. Construction at the site began in mid-1943. In November 1943 some plutonium trifluoride was reduced to create the first sample of plutonium metal: a few micrograms of metallic beads. Enough plutonium was produced to make it the first synthetically made element to be visible with the unaided eye. The nuclear properties of plutonium-239 were also studied; researchers found that when it is hit by a neutron it breaks apart (fissions) by releasing more neutrons and energy. These neutrons can hit other atoms of plutonium-239 and so on in an exponentially fast chain reaction. This can result in an explosion large enough to destroy a city if enough of the isotope is concentrated to form a
critical mass In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
. During the early stages of research, animals were used to study the effects of radioactive substances on health. These studies began in 1944 at the University of California at Berkeley's Radiation Laboratory and were conducted by Joseph G. Hamilton. Hamilton was looking to answer questions about how plutonium would vary in the body depending on exposure mode (oral ingestion, inhalation, absorption through skin), retention rates, and how plutonium would be fixed in tissues and distributed among the various organs. Hamilton started administering soluble microgram portions of plutonium-239 compounds to rats using different valence states and different methods of introducing the plutonium (oral, intravenous, etc.). Eventually, the lab at Chicago also conducted its own plutonium injection experiments using different animals such as mice, rabbits, fish, and even dogs. The results of the studies at Berkeley and Chicago showed that plutonium's physiological behavior differed significantly from that of radium. The most alarming result was that there was significant deposition of plutonium in the liver and in the "actively metabolizing" portion of bone. Furthermore, the rate of plutonium elimination in the excreta differed between species of animals by as much as a factor of five. Such variation made it extremely difficult to estimate what the rate would be for human beings.


Production during the Manhattan Project

During World War II the U.S. government established the
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
, for developing an atomic bomb. The three primary research and production sites of the project were the plutonium production facility at what is now the
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. It has also been known as SiteW and the Hanford Nuclear R ...
; the
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
facilities at
Oak Ridge, Tennessee Oak Ridge is a city in Anderson County, Tennessee, Anderson and Roane County, Tennessee, Roane counties in the East Tennessee, eastern part of the U.S. state of Tennessee, about west of downtown Knoxville, Tennessee, Knoxville. Oak Ridge's po ...
; and the weapons research and design lab, now known as
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development Laboratory, laboratories of the United States Department of Energy National Laboratories, United States Department of Energy ...
, LANL. The first production reactor that made Pu was the
X-10 Graphite Reactor The X-10 Graphite Reactor is a decommissioned nuclear reactor at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Formerly known as the Clinton Pile and X-10 Pile, it was the world's second artificial nuclear reactor (after Enrico Fermi's ...
. It went online in 1943 and was built at a facility in Oak Ridge that later became the
Oak Ridge National Laboratory Oak Ridge National Laboratory (ORNL) is a federally funded research and development centers, federally funded research and development center in Oak Ridge, Tennessee, United States. Founded in 1943, the laboratory is sponsored by the United Sta ...
. In January 1944, workers laid the foundations for the first chemical separation building, T Plant located in 200-West. Both the T Plant and its sister facility in 200-West, the U Plant, were completed by October. (U Plant was used only for training during the Manhattan Project.) The separation building in 200-East, B Plant, was completed in February 1945. The second facility planned for 200-East was canceled. Nicknamed Queen Marys by the workers who built them, the separation buildings were awesome canyon-like structures 800 feet long, 65 feet wide, and 80 feet high containing forty process pools. The interior had an eerie quality as operators behind seven feet of concrete shielding manipulated remote control equipment by looking through television monitors and periscopes from an upper gallery. Even with massive concrete lids on the process pools, precautions against radiation exposure were necessary and influenced all aspects of plant design. On April 5, 1944,
Emilio Segrè Emilio Gino Segrè ( ; ; 1 February 1905 – 22 April 1989) was an Italian-American nuclear physicist and radiochemist who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was award ...
at Los Alamos received the first sample of reactor-produced plutonium from Oak Ridge. Within ten days, he discovered that reactor-bred plutonium had a higher concentration of Pu than cyclotron-produced plutonium. Pu has a high spontaneous fission rate, raising the overall background neutron level of the plutonium sample. The original gun-type plutonium weapon, code-named " Thin Man", had to be abandoned as a result—the increased number of spontaneous neutrons meant that nuclear pre-detonation ( fizzle) was likely. The entire plutonium weapon design effort at Los Alamos was soon changed to the more complicated implosion device, code-named "
Fat Man "Fat Man" (also known as Mark III) was the design of the nuclear weapon the United States used for seven of the first eight nuclear weapons ever detonated in history. It is also the most powerful design to ever be used in warfare. A Fat Man ...
". In an implosion bomb, plutonium is compressed to high density with
explosive lens An explosive lens—as used, for example, in nuclear weapons—is a highly specialized shaped charge. In general, it is a device composed of several explosive charges. These charges are arranged and formed with the intent to control the sha ...
es—a technically more daunting task than the simple gun-type bomb, but necessary for a plutonium bomb. Uranium, by contrast, can be used with either method. Construction of the Hanford
B Reactor The B Reactor at the Hanford Site, near Richland, Washington, was the first large-scale nuclear reactor ever built, at 250 MW. It achieved criticality on September 26, 1944. The project was a key part of the Manhattan Project, the United States ...
, the first industrial-sized nuclear reactor for the purposes of material production, was completed in March 1945. B Reactor produced the fissile material for the plutonium weapons used during World War II. B, D and F were the initial reactors built at Hanford, and six additional plutonium-producing reactors were built later at the site. By the end of January 1945, the highly purified plutonium underwent further concentration in the completed chemical isolation building, where remaining impurities were removed successfully. Los Alamos received its first plutonium from Hanford on February 2. While it was still by no means clear that enough plutonium could be produced for use in bombs by the war's end, Hanford was by early 1945 in operation. Only two years had passed since Col. Franklin Matthias first set up his temporary headquarters on the banks of the Columbia River. According to
Kate Brown Katherine Brown (born June 21, 1960) is an American politician and attorney who served as the 38th governor of Oregon from 2015 to 2023. A member of the Democratic Party, she served three terms as the state representative from the 13th distr ...
, the plutonium production plants at Hanford and
Mayak The Mayak Production Association (, , from 'lighthouse') is one of the largest nuclear facilities in the Russian Federation, housing Production reactor, production reactors (''non'' electricity) and a reprocessing plant. The closest settlement ...
in Russia, over a period of four decades, "both released more than 200 million curies of radioactive isotopes into the surrounding environment—twice the amount expelled in the
Chernobyl disaster On 26 April 1986, the no. 4 reactor of the Chernobyl Nuclear Power Plant, located near Pripyat, Ukrainian Soviet Socialist Republic, Ukrainian SSR, Soviet Union (now Ukraine), exploded. With dozens of direct casualties, it is one of only ...
in each instance". Most of this
radioactive contamination Radioactive contamination, also called radiological pollution, is the deposition of, or presence of Radioactive decay, radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is uni ...
over the years were part of normal operations, but unforeseen accidents did occur and plant management kept this secret, as the pollution continued unabated. In 2004, a safe was discovered during excavations of a burial trench at the
Hanford nuclear site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County, Washington, Benton County in the U.S. state of Washington (state), Washington. It has also ...
. Inside the safe were various items, including a large glass bottle containing a whitish slurry which was subsequently identified as the oldest sample of weapons-grade plutonium known to exist. Isotope analysis by
Pacific Northwest National Laboratory Pacific Northwest National Laboratory (PNNL) is one of the United States Department of Energy national laboratories, managed by the Department of Energy's (DOE) Office of Science. The main campus of the laboratory is in Richland, Washington ...
indicated that the plutonium in the bottle was manufactured in the X-10 Graphite Reactor at Oak Ridge during 1944.


Trinity and Fat Man atomic bombs

The first atomic bomb test, codenamed "
Trinity The Trinity (, from 'threefold') is the Christian doctrine concerning the nature of God, which defines one God existing in three, , consubstantial divine persons: God the Father, God the Son (Jesus Christ) and God the Holy Spirit, thr ...
"and detonated on July 16, 1945, near
Alamogordo, New Mexico Alamogordo () is a city in and the county seat of Otero County, New Mexico, United States. A city in the Tularosa Basin of the Chihuahuan Desert, it is bordered on the east by the Sacramento Mountains and to the west by Holloman Air Force ...
, used plutonium as its fissile material. The implosion design of "
Gadget A gadget is a machine, mechanical device or any ingenious article. Gadgets are sometimes referred to as ''wikt:gizmo, gizmos''. History The etymology of the word is disputed. The word first appears as reference to an 18th-century tool in Glass ...
", as the Trinity device was codenamed, used conventional explosive lenses to compress a sphere of plutonium into a supercritical mass, which was simultaneously showered with neutrons from "Urchin", an initiator made of
polonium Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal (although sometimes classified as a metalloid) with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tel ...
and
beryllium Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
(
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
: (α, n) reaction). Together, these ensured a runaway chain reaction and explosion. The weapon weighed over 4
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1,000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton in the United States to distinguish it from the non-metric units of the s ...
s, though it had just 6 kg of plutonium. About 20% of the plutonium in the Trinity weapon, fissioned; releasing an energy equivalent to about 20,000 tons of TNT. An identical design was used in "Fat Man", dropped on
Nagasaki , officially , is the capital and the largest Cities of Japan, city of Nagasaki Prefecture on the island of Kyushu in Japan. Founded by the Portuguese, the port of Portuguese_Nagasaki, Nagasaki became the sole Nanban trade, port used for tr ...
, Japan, on August 9, 1945, killing 35,000–40,000 people and destroying 68%–80% of war production at Nagasaki. Only after the announcement of the first atomic bombs was the existence and name of plutonium made known to the public by the Manhattan Project's
Smyth Report The Smyth Report (officially ''Atomic Energy for Military Purposes'') is the common name of an administrative history written by American physicist Henry DeWolf Smyth about the Manhattan Project, the Allies of World War II, Allied effort to ...
.


Cold War use and waste

Large stockpiles of
weapons-grade plutonium Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nucl ...
were built up by both the
Soviet Union The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
and the United States during the
Cold War The Cold War was a period of global Geopolitics, geopolitical rivalry between the United States (US) and the Soviet Union (USSR) and their respective allies, the capitalist Western Bloc and communist Eastern Bloc, which lasted from 1947 unt ...
. The U.S. reactors at Hanford and the
Savannah River Site The Savannah River Site (SRS), formerly the Savannah River Plant, is a U.S. Department of Energy (DOE) reservation in the United States, located in the state of South Carolina on land in Aiken, Allendale and Barnwell counties adjacent to the ...
in South Carolina produced 103 tonnes, and an estimated 170 tonnes of military-grade plutonium was produced in the USSR. Each year about 20 tonnes of the element is still produced as a by-product of the
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
industry. As much as 1000 tonnes of plutonium may be in storage with more than 200 tonnes of that either inside or extracted from nuclear weapons.
SIPRI Stockholm International Peace Research Institute (SIPRI) is an international institute based in Stockholm, Sweden. It was founded in 1966 and provides data, analysis and recommendations for armed conflict, military expenditure and arms trade a ...
estimated the world plutonium stockpile in 2007 as about 500 tonnes, divided equally between weapon and civilian stocks. Radioactive contamination at the
Rocky Flats Plant The Rocky Flats Plant was a United States manufacturing complex that produced nuclear weapons parts near Denver, Colorado. The facility's primary mission was the fabrication of plutonium pits, the fissionable part of a bomb that produces a nuc ...
primarily resulted from two major plutonium fires in 1957 and 1969. Much lower concentrations of radioactive isotopes were released throughout the operational life of the plant from 1952 to 1992. Prevailing winds from the plant carried airborne contamination south and east, into populated areas northwest of Denver. The contamination of the Denver area by plutonium from the fires and other sources was not publicly reported until the 1970s. According to a 1972 study coauthored by Edward Martell, "In the more densely populated areas of Denver, the Pu contamination level in surface soils is several times fallout", and the plutonium contamination "just east of the Rocky Flats plant ranges up to hundreds of times that from nuclear tests". As noted by Carl Johnson in Ambio, "Exposures of a large population in the Denver area to plutonium and other radionuclides in the exhaust plumes from the plant date back to 1953." Reprinted in Weapons production at the Rocky Flats plant was halted after a combined
FBI The Federal Bureau of Investigation (FBI) is the domestic Intelligence agency, intelligence and Security agency, security service of the United States and Federal law enforcement in the United States, its principal federal law enforcement ag ...
and EPA raid in 1989 and years of protests. The plant has since been shut down, with its buildings demolished and completely removed from the site. In the U.S., some plutonium extracted from dismantled nuclear weapons is melted to form glass logs of plutonium oxide that weigh two tonnes. The glass is made of
borosilicate Borosilicate glass is a type of glass with silicon dioxide, silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficient of thermal expansion, coefficients of thermal expansion ( ...
s mixed with
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
and
gadolinium Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
. These logs are planned to be encased in
stainless steel Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
and stored as much as underground in bore holes that will be back-filled with
concrete Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactur ...
. The U.S. planned to store plutonium in this way at the
Yucca Mountain nuclear waste repository The Yucca Mountain Nuclear Waste Repository, as designated by the Nuclear Waste Policy Act amendments of 1987, is a proposed deep geological repository storage facility within Yucca Mountain for spent nuclear fuel and other high-level radioact ...
, which is about north-east of
Las Vegas Las Vegas, colloquially referred to as Vegas, is the most populous city in the U.S. state of Nevada and the county seat of Clark County. The Las Vegas Valley metropolitan area is the largest within the greater Mojave Desert, and second-l ...
, Nevada. On March 5, 2009, Energy Secretary
Steven Chu Steven ChuWaste Isolation Pilot Plant The Waste Isolation Pilot Plant, or WIPP, in New Mexico, US, is a deep geological repository licensed to store transuranic radioactive waste for 10,000 years. The storage rooms at the WIPP are 2,150 feet (660 m) underground in a salt formatio ...
in New Mexico. In a Presidential Memorandum dated January 29, 2010, President Obama established the
Blue Ribbon Commission on America's Nuclear Future A Blue Ribbon Commission on America's Nuclear Future was appointed by US President Barack Obama to look into future options for existing and future High-level radioactive waste management, nuclear waste, following the ending of work on the inco ...
. In their final report the Commission put forth recommendations for developing a comprehensive strategy to pursue, including: : "Recommendation #1: The United States should undertake an integrated nuclear waste management program that leads to the timely development of one or more permanent deep geological facilities for the safe disposal of spent fuel and high-level nuclear waste".


Medical experimentation

During and after the end of World War II, scientists working on the Manhattan Project and other nuclear weapons research projects conducted studies of the effects of plutonium on laboratory animals and human subjects. Animal studies found that a few milligrams of plutonium per kg of tissue is a lethal dose. For human subjects, this involved injecting solutions typically containing 5 micrograms (μg) of plutonium into hospital patients thought to be either terminally ill, or to have a life expectancy of less than ten years either due to age or chronic disease. This was reduced to 1 μg in July 1945 after animal studies found that the way plutonium distributes itself in bones is more dangerous than
radium Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
. Most of the subjects, Eileen Welsome says, were poor, powerless, and sick. In 1945–47, eighteen human test subjects were injected with plutonium without
informed consent Informed consent is an applied ethics principle that a person must have sufficient information and understanding before making decisions about accepting risk. Pertinent information may include risks and benefits of treatments, alternative treatme ...
. The tests were used to create diagnostic tools to determine the uptake of plutonium in the body in order to develop safety standards for working with plutonium. Ebb Cade was an unwilling participant in medical experiments that involved injection of 4.7 μg of plutonium on April 10, 1945, at
Oak Ridge, Tennessee Oak Ridge is a city in Anderson County, Tennessee, Anderson and Roane County, Tennessee, Roane counties in the East Tennessee, eastern part of the U.S. state of Tennessee, about west of downtown Knoxville, Tennessee, Knoxville. Oak Ridge's po ...
. This experiment was under the supervision of Harold Hodge. Other experiments directed by the
United States Atomic Energy Commission The United States Atomic Energy Commission (AEC) was an agency of the United States government established after World War II by the U.S. Congress to foster and control the peacetime development of atomic science and technology. President Harry ...
and the Manhattan Project continued into the 1970s. '' The Plutonium Files'' chronicles the lives of the subjects of the secret program by naming each person involved and discussing the ethical and medical research conducted in secret by the scientists and doctors. The episode is now considered to be a serious breach of
medical ethics Medical ethics is an applied branch of ethics which analyzes the practice of clinical medicine and related scientific research. Medical ethics is based on a set of values that professionals can refer to in the case of any confusion or conflict. T ...
and of the Hippocratic Oath. The government covered up most of these actions until 1993, when President
Bill Clinton William Jefferson Clinton (né Blythe III; born August 19, 1946) is an American politician and lawyer who was the 42nd president of the United States from 1993 to 2001. A member of the Democratic Party (United States), Democratic Party, ...
ordered a change of policy and federal agencies then made available relevant records. The resulting investigation was undertaken by the president's
Advisory Committee on Human Radiation Experiments The Advisory Committee on Human Radiation Experiments was established in 1994 to investigate questions of the record of the United States government with respect to human radiation experiments. The special committee was created by President of the ...
, and it uncovered much of the material about plutonium research on humans. The committee issued a controversial 1995 report which said that "wrongs were committed" but it did not condemn those who perpetrated them.


Applications


Explosives

Pu is a key fissile component in nuclear weapons, due to its ease of fission and availability. Encasing the bomb's
plutonium pit In nuclear weapon design, the pit is the core of an implosion nuclear weapon, consisting of fissile material and any neutron reflector or tamper bonded to it. Early pits were spherical, while most modern pits are prolate spheroidal. S ...
in a tamper (a layer of dense material) decreases the
critical mass In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
by reflecting escaping neutrons back into the plutonium core. This reduces the critical mass from 16 kg to 10 kg, which is a sphere with a diameter of about . This critical mass is about a third of that for uranium-235. The Fat Man plutonium bombs used explosive compression of plutonium to obtain significantly higher density than normal, combined with a central neutron source to begin the reaction and increase efficiency. Thus only 6 kg of plutonium was needed for an explosive yield equivalent to 20 kilotons of TNT. Hypothetically, as little as 4 kg of plutonium—and maybe even less—could be used to make a single atomic bomb using very sophisticated assembly designs.


Mixed oxide fuel

Spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
from normal
light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
s contains plutonium, but it is a mixture of plutonium-242, 240, 239 and 238. The mixture is not sufficiently enriched for efficient nuclear weapons, but can be used once as
MOX fuel Mixed oxide fuel (MOX fuel) is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enr ...
. Accidental neutron capture causes the amount of plutonium-242 and 240 to grow each time the plutonium is irradiated in a reactor with low-speed "thermal" neutrons, so that after the second cycle, the plutonium can only be consumed by
fast neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission nuclear chain reaction, chain reaction is sustained by fast neutrons (carrying energies above 1 Electronvolt, MeV, ...
s. If fast neutron reactors are not available (the normal case), excess plutonium is usually discarded, and forms one of the longest-lived components of nuclear waste. The desire to consume this plutonium and other
transuranic The transuranium (or transuranic) elements are the chemical elements with atomic number greater than 92, which is the atomic number of uranium. All of them are radioactively unstable and decay into other elements. Except for neptunium and pluton ...
fuels and reduce the radiotoxicity of the waste is the usual reason nuclear engineers give to make fast neutron reactors. The most common chemical process,
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. It is based on liquid–liquid extraction ion-exchange. PUREX is the '' de facto'' standard aqueous nuclear reproc ...
(''P''lutonium–''UR''anium ''EX''traction), reprocesses spent nuclear fuel to extract plutonium and uranium which can be used to form a mixed oxide (MOX) fuel for reuse in nuclear reactors. Weapons-grade plutonium can be added to the fuel mix. MOX fuel is used in
light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
s and consists of 60 kg of plutonium per tonne of fuel; after four years, three-quarters of the plutonium is burned (turned into other elements). MOX fuel has been in use since the 1980s, and is widely used in Europe.
Breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the ...
s are specifically designed to create more fissionable material than they consume. MOX fuel improves total burnup. A fuel rod is reprocessed after three years of use to remove waste products, which by then account for 3% of the total weight of the rods. Any uranium or plutonium isotopes produced during those three years are left and the rod goes back into production. The presence of up to 1% gallium per mass in weapons-grade plutonium alloy has the potential to interfere with long-term operation of a light water reactor. Plutonium recovered from spent reactor fuel poses little proliferation hazard, because of excessive contamination with non-fissile plutonium-240 and plutonium-242. Separation of the isotopes is not feasible. A dedicated reactor operating on very low
burnup In nuclear power technology, burnup is a measure of how much energy is extracted from a given amount of nuclear fuel. It may be measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial heavy metal atom) or %FIF ...
(hence minimal exposure of newly formed plutonium-239 to additional neutrons which causes it to be transformed to heavier isotopes of plutonium) is generally required to produce material suitable for use in efficient
nuclear weapons A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either nuclear fission, fission (fission or atomic bomb) or a combination of fission and nuclear fusion, fusion reactions (thermonuclear weap ...
. While "weapons-grade" plutonium is defined to contain at least 92% plutonium-239 (of the total plutonium), the United States have managed to detonate an under-20Kt device using plutonium believed to contain only about 85% plutonium-239, so called '"fuel-grade" plutonium. The "reactor-grade" plutonium produced by a regular LWR burnup cycle typically contains less than 60% Pu-239, with up to 30% parasitic Pu-240/Pu-242, and 10–15% fissile Pu-241. It is unknown if a device using plutonium obtained from reprocessed civil nuclear waste can be detonated, however such a device could hypothetically fizzle and spread radioactive materials over a large urban area. The
IAEA The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 1957 ...
conservatively classifies plutonium of all isotopic vectors as "direct-use" material, that is, "nuclear material that can be used for the manufacture of nuclear explosives components without transmutation or further enrichment".


Power and heat source

Plutonium-238 has a half-life of 87.74 years. It emits a large amount of
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
with low levels of both
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s/
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s and neutrons. Being an alpha emitter, it combines high energy radiation with low penetration and thereby requires minimal shielding. A sheet of paper can be used to shield against the alpha particles from Pu. One
kilogram The kilogram (also spelled kilogramme) is the base unit of mass in the International System of Units (SI), equal to one thousand grams. It has the unit symbol kg. The word "kilogram" is formed from the combination of the metric prefix kilo- (m ...
of the isotope generates about 570 watts of heat. These characteristics make it well-suited for electrical power generation for devices that must function without direct maintenance for timescales approximating a human lifetime. It is therefore used in
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
s and
radioisotope heater unit A radioisotope heater unit (RHU) is a small device that provides heat through radioactive decay. They are similar to tiny radioisotope thermoelectric generators (RTG) and normally provide about one watt of heat each, derived from the decay of ...
s such as those in the '' Cassini'', '' Voyager'', ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
'' and ''
New Horizons ''New Horizons'' is an Interplanetary spaceflight, interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institut ...
'' space probes, and the ''
Curiosity Curiosity (from Latin , from "careful, diligent, curious", akin to "care") is a quality related to inquisitive thinking, such as exploration, investigation, and learning, evident in humans and other animals. Curiosity helps Developmental psyc ...
'' and '' Perseverance'' (
Mars 2020 Mars 2020 is a NASA mission that includes the rover ''Perseverance (rover), Perseverance'', the now-retired small robotic helicopter ''Ingenuity (helicopter), Ingenuity'', and associated delivery systems, as part of the Mars Exploration Progra ...
)
Mars rover A Mars rover is a remote-controlled motor vehicle designed to travel on the surface of Mars. Rovers have several advantages over stationary landers: they examine more territory, they can be directed to interesting features, they can place them ...
s. The twin ''Voyager'' spacecraft were launched in 1977, each containing a 500 watt plutonium power source. Over 30 years later, each source still produces about 300 watts which allows limited operation of each spacecraft. An earlier version of the same technology powered five Apollo Lunar Surface Experiment Packages, starting with
Apollo 12 Apollo 12 (November 14–24, 1969) was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center in Florida. Commander Charles ...
in 1969. Pu has also been used successfully to power artificial heart
pacemaker A pacemaker, also known as an artificial cardiac pacemaker, is an implanted medical device that generates electrical pulses delivered by electrodes to one or more of the chambers of the heart. Each pulse causes the targeted chamber(s) to co ...
s, to reduce the risk of repeated surgery. It has been largely replaced by lithium-based
primary cell A primary battery or primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and it is not rechargeable unlike a secondary cell ( rechargeable battery). In general, the electrochemical reaction occurring in ...
s, but there were somewhere between 50 and 100 plutonium-powered pacemakers still implanted and functioning in living patients in the United States. By the end of 2007, the number of plutonium-powered pacemakers was reported to be down to just nine. Pu was studied as a way to provide supplemental heat to
scuba diving Scuba diving is a Diving mode, mode of underwater diving whereby divers use Scuba set, breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The word ''scub ...
. Pu mixed with beryllium is used to generate neutrons for research purposes.


Precautions


Toxicity

There are two aspects to the harmful effects of plutonium: radioactivity and
heavy metal poisoning A toxic heavy metal is a common but misleading term for a metal-like element noted for its potential toxicity. Not all heavy metals are toxic and some toxic metals are not heavy. Elements often discussed as toxic include cadmium, mercury and ...
. Plutonium compounds are radioactive and accumulate in
bone marrow Bone marrow is a semi-solid biological tissue, tissue found within the Spongy bone, spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It i ...
. Contamination by plutonium oxide has resulted from nuclear disasters and radioactive incidents, including military nuclear accidents where nuclear weapons have burned. Studies of the effects of these smaller releases, as well as of the widespread radiation poisoning sickness and death following the
atomic bombings of Hiroshima and Nagasaki On 6 and 9 August 1945, the United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki, respectively, during World War II. The aerial bombings killed between 150,000 and 246,000 people, most of whom were civili ...
, have provided considerable information regarding the dangers, symptoms and prognosis of
radiation poisoning Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start wit ...
, which in the case of the Japanese survivors was largely unrelated to direct plutonium exposure. The decay of plutonium, releases three types of
ionizing radiation Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
:
alpha Alpha (uppercase , lowercase ) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter ''aleph'' , whose name comes from the West Semitic word for ' ...
(α),
beta Beta (, ; uppercase , lowercase , or cursive ; or ) is the second letter of the Greek alphabet. In the system of Greek numerals, it has a value of 2. In Ancient Greek, beta represented the voiced bilabial plosive . In Modern Greek, it represe ...
(β), and
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
(γ). Either acute or longer-term exposure carries a danger of serious health outcomes including
radiation sickness Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start wit ...
,
genetic damage In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosi ...
,
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
, and death. The danger increases with the amount of exposure. α-radiation can travel only a short distance and cannot travel through the outer, dead layer of human skin. β-radiation can penetrate human skin, but cannot go all the way through the body. γ-radiation can go all the way through the body. Even though α radiation cannot penetrate the skin, ingested or inhaled plutonium does irradiate internal organs. α-particles generated by inhaled plutonium have been found to cause lung cancer in a cohort of European nuclear workers. The
skeleton A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal fra ...
, where plutonium accumulates, and the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
, where it collects and becomes concentrated, are at risk. Plutonium is not absorbed into the body efficiently when ingested; only 0.04% of plutonium oxide is absorbed after ingestion. Plutonium absorbed by the body is excreted very slowly, with a
biological half-life Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a drug, biological substance (such as a medication) to decrease from its maximum concentration (chemistry), concentration (Cmax (pharm ...
of 200 years. Plutonium passes only slowly through cell membranes and intestinal boundaries, so absorption by ingestion and incorporation into bone structure proceeds very slowly. Donald Mastick accidentally swallowed a small amount of
plutonium(III) chloride Plutonium(III) chloride is a chemical compound with the formula PuCl3. This ionic plutonium salt can be prepared by reacting the metal with hydrochloric acid. Structure Plutonium atoms in crystalline PuCl3 are 9 coordinate, and the structure is ...
, which was detectable for the next thirty years of his life, but appeared to suffer no ill effects. Plutonium is more dangerous if inhaled than if ingested. The risk of
lung cancer Lung cancer, also known as lung carcinoma, is a malignant tumor that begins in the lung. Lung cancer is caused by genetic damage to the DNA of cells in the airways, often caused by cigarette smoking or inhaling damaging chemicals. Damaged ...
increases once the total radiation
dose equivalent Equivalent dose (symbol ''H'') is a dose quantity representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from ...
of inhaled plutonium exceeds 400 mSv. The U.S. Department of Energy estimates that the lifetime cancer risk from inhaling 5,000 plutonium particles, each about 3 μm wide, is 1% over the background U.S. average. Ingestion or inhalation of large amounts may cause acute radiation poisoning and possibly death. However, no human being is known to have died because of inhaling or ingesting plutonium, and many people have measurable amounts of plutonium in their bodies. The " hot particle" theory in which a particle of plutonium dust irradiates a localized spot of lung tissue is not supported by mainstream research—such particles are more mobile than originally thought and toxicity is not measurably increased due to particulate form. When inhaled, plutonium can pass into the bloodstream. Once in the bloodstream, plutonium moves throughout the body and into the bones, liver, or other body organs. Plutonium that reaches body organs generally stays in the body for decades and continues to expose the surrounding tissue to radiation and thus may cause cancer. A commonly cited quote by
Ralph Nader Ralph Nader (; born February 27, 1934) is an American lawyer and political activist involved in consumer protection, environmentalism, and government reform causes. He is a Perennial candidate, perennial presidential candidate. His 1965 book '' ...
states that a pound of plutonium dust spread into the atmosphere would be enough to kill 8 billion people. This was disputed by Bernard Cohen, an opponent of the generally accepted
linear no-threshold model The linear no-threshold model (LNT) is a dose-response model used in radiation protection to estimate stochastic health effects such as radiation-induced cancer, genetic mutations and teratogenic effects on the human body due to exposure to io ...
of radiation toxicity. Cohen estimated that one pound of plutonium could kill no more than 2 million people by inhalation, so that the toxicity of plutonium is roughly equivalent with that of
nerve gas Nerve agents, sometimes also called nerve gases, are a class of organic chemicals that disrupt the mechanisms by which nerves transfer messages to organs. The disruption is caused by the blocking of acetylcholinesterase (AChE), an enzyme that ...
. (Online version of Cohen's book ''The Nuclear Energy Option'' (Plenum Press, 1990) ). Several populations of people who have been exposed to plutonium dust (e.g. people living down-wind of Nevada test sites, Nagasaki survivors, nuclear facility workers, and "terminally ill" patients injected with Pu in 1945–46 to study Pu metabolism) have been carefully followed and analyzed. Cohen found these studies inconsistent with high estimates of plutonium toxicity, citing cases such as Albert Stevens who survived into old age after being injected with plutonium. "There were about 25 workers from Los Alamos National Laboratory who inhaled a considerable amount of plutonium dust during 1940s; according to the hot-particle theory, each of them has a 99.5% chance of being dead from lung cancer by now, but there has not been a single lung cancer among them."


Marine toxicity

Plutonium is known to enter the marine environment by dumping of waste or accidental leakage from nuclear plants. Though the highest concentrations of plutonium in marine environments are found in sediments, the complex biogeochemical cycle of plutonium means it is also found in all other compartments. For example, various zooplankton species that aid in the
nutrient cycle A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyc ...
will consume the element on a daily basis. The complete excretion of ingested plutonium by zooplankton makes their defecation an extremely important mechanism in the scavenging of plutonium from surface waters. However, those zooplankton that succumb to predation by larger organisms may become a transmission vehicle of plutonium to fish. In addition to consumption, fish can also be exposed to plutonium by their distribution around the globe. One study investigated the effects of transuranium elements (
plutonium-238 Plutonium-238 ( or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage ...
,
plutonium-239 Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
,
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. ...
) on various fish living in the
Chernobyl Exclusion Zone The Chernobyl Nuclear Power Plant Zone of Alienation, also called the 30-Kilometre Zone or simply The Zone, was established shortly after the 1986 Chernobyl disaster in the Ukrainian SSR of the Soviet Union. Initially, Soviet authorities declar ...
(CEZ). Results showed that a proportion of female perch in the CEZ displayed either a failure or delay in maturation of the gonads. Similar studies found large accumulations of plutonium in the respiratory and digestive organs of cod, flounder and herring. Plutonium toxicity is just as detrimental to larvae of fish in nuclear waste areas. Undeveloped eggs have a higher risk than developed adult fish exposed to the element in these waste areas. Oak Ridge National Laboratory displayed that carp and minnow embryos raised in solutions containing plutonium did not hatch; eggs that hatched displayed significant abnormalities when compared to control developed embryos. It revealed that higher concentrations of plutonium have been found to cause issues in marine fauna exposed to the element.


Criticality potential

Care must be taken to avoid the accumulation of amounts of plutonium which approach critical mass, particularly because plutonium's critical mass is only a third of that of uranium-235. A critical mass of plutonium emits lethal amounts of neutrons and
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s. Plutonium in solution is more likely to form a critical mass than the solid form due to
moderation Moderation is the process or trait of eliminating, lessening, or avoiding extremes. It is used to ensure normality throughout the medium on which it is being conducted. Common uses of moderation include: * A way of life emphasizing perfect amo ...
by the hydrogen in water.
Criticality accident A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, divergent chain reaction, or simply critical. Any such event involves the uninten ...
s have occurred, sometimes killing people. Careless handling of
tungsten carbide Tungsten carbide (chemical formula: ) is a carbide containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in in ...
bricks around a 6.2 kg plutonium sphere resulted in a fatal dose of radiation at Los Alamos on August 21, 1945, when scientist Harry Daghlian received a dose estimated at 5.1 sievert (510  rem) and died 25 days later. Nine months later, another Los Alamos scientist, Louis Slotin, died from a similar accident involving a beryllium reflector and the same plutonium core (the "
demon core The demon core was a sphere of plutonium that was involved in two fatal radiation accidents when scientists tested it as a fissile core of an early atomic bomb. It was manufactured in 1945 by the Manhattan Project, the U.S. nuclear weapon deve ...
") that had previously killed Daghlian. In December 1958, during a process of purifying plutonium at Los Alamos, a critical mass formed in a mixing vessel, which killed chemical operator Cecil Kelley. Other
nuclear accidents A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, la ...
have occurred in the Soviet Union, Japan, the United States, and many other countries.


Flammability

Metallic plutonium is a fire hazard, especially if finely divided. In a moist environment, plutonium forms
hydrides In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all co ...
on its surface, which are pyrophoric and may ignite in air at room temperature. Plutonium expands up to 70% in volume as it oxidizes and thus may break its container. The radioactivity of the burning material is another hazard.
Magnesium oxide Magnesium oxide (MgO), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
sand is probably the most effective material for extinguishing a plutonium fire. It cools the burning material, acting as a
heat sink A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is thermal management (electronics), ...
, and also blocks off oxygen. Special precautions are necessary to store or handle plutonium in any form; generally a dry
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
atmosphere is required.


Transportation


Land and sea

The usual transport of plutonium is through the more stable plutonium oxide in a sealed package. A typical transport consists of one truck carrying one protected shipping container, holding a number of packages with a total weight varying from 80 to 200 kg of plutonium oxide. A sea shipment may consist of several containers, each holding a sealed package. The U.S.
Nuclear Regulatory Commission The United States Nuclear Regulatory Commission (NRC) is an independent agency of the United States government tasked with protecting public health and safety related to nuclear energy. Established by the Energy Reorganization Act of 1974, the ...
dictates that it must be solid instead of powder if the contents surpass 0.74  TBq (20  curies) of radioactivity. In 2016, the ships ''Pacific Egret'' and ''Pacific Heron'' of Pacific Nuclear Transport Ltd. transported 331 kg (730 lbs) of plutonium to a United States government facility in
Savannah River The Savannah River is a major river in the Southeastern United States, forming most of the border between the states of Georgia (U.S. state), Georgia and South Carolina. The river flows from the Appalachian Mountains to the Atlantic Ocean, ...
,
South Carolina South Carolina ( ) is a U.S. state, state in the Southeastern United States, Southeastern region of the United States. It borders North Carolina to the north and northeast, the Atlantic Ocean to the southeast, and Georgia (U.S. state), Georg ...
.


Air

U.S. Government air transport regulations permit the transport of plutonium by air, subject to restrictions on other dangerous materials carried on the same flight, packaging requirements, and stowage in the rearmost part of the aircraft. In 2012, media revealed that plutonium has been flown out of Norway on commercial
passenger airline An airline is a company that provides air transport services for traveling passengers or freight (cargo). Airlines use aircraft to supply these services and may form partnerships or alliances with other airlines for codeshare agreements, in w ...
s—around every other year—including one time in 2011. Regulations permit a plane to transport 15 grams of fissionable material. Such plutonium transportation is without problems, according to a senior advisor (''seniorrådgiver'') at
Statens strålevern Norwegian Radiation and Nuclear Safety Authority (, abbreviated to DSA) is a Norwegian public agency under the Ministry of Health and Care Services headquartered in Østerås in Bærum Municipality which is part of the Greater Oslo Region. It w ...
.


Notes


Footnotes


Citations


References

* * * * * * * * * * * * * * * * * * * * * * * * * * *


External links

* * * * * * * * * * * * * {{featured article Chemical elements Actinides Carcinogens Nuclear materials Synthetic elements Manhattan Project Materials that expand upon freezing Pyrophoric materials