A membrane transport protein is a
membrane protein
Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
involved in the movement of
ions, small
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s, and
macromolecule
A macromolecule is a "molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass." Polymers are physi ...
s, such as another
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
, across a
biological membrane
A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of th ...
. Transport proteins are
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
transmembrane protein
A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently un ...
s; that is they exist permanently within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by
facilitated diffusion
Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembr ...
,
active transport
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellula ...
,
osmosis
Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively permeable membrane, selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of ...
, or
reverse diffusion
Reverse diffusion refers to a situation where the transport of particles (atoms or molecules) in a medium occurs towards regions of higher concentration gradients, opposite to that observed during diffusion. This phenomenon occurs during phase se ...
. The two main types of proteins involved in such transport are broadly categorized as either ''channels'' or ''carriers'' (a.k.a. transporters, or permeases). Examples of channel/carrier proteins include the
GLUT 1 uniporter,
sodium channel
Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell (biology), cell's cell membrane, membrane. They belong to the Cation channel superfamily, superfamily of cation channels.
Classific ...
s, and
potassium channel
Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of ...
s. The
solute carriers and
atypical SLCs
Atypical Solute Carrier Families (Atypical SLCs) are novel plausible secondary active or facilitative transporter proteins that share ancestral background with the known solute carrier families (SLCs). However, they have not been assigned a name a ...
are secondary active or facilitative transporters in humans.
Collectively membrane transporters and channels are known as the transportome.
Transportomes govern cellular influx and efflux of not only ions and nutrients but drugs as well.
Difference between channels and carriers
A carrier is not open simultaneously to both the extracellular and intracellular environments. Either its inner gate is open, or outer gate is open. In contrast, a channel can be open to both environments at the same time, allowing the molecules to diffuse without interruption. Carriers have binding sites, but pores and channels do not. When a channel is opened, millions of ions can pass through the membrane per second, but only 100 to 1000 molecules typically pass through a carrier molecule in the same time. Each carrier protein is designed to recognize only one substance or one group of very similar substances. Research has correlated defects in specific carrier proteins with specific diseases.
Active transport
Active transport
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellula ...
is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called
primary active transport. Membrane transport proteins that are driven directly by the hydrolysis of ATP are referred to as
ATPase
ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, ATP hydrolase, adenosine triphosphatase) are a class of enzymes that catalyze the decomposition of ATP into ADP and a free phosphate ion or ...
pumps. These types of pumps direct the exergonic hydrolysis of ATP to the unfavorable movement of molecules against their concentration gradient. Examples of ATPase pumps include
P-type ATPase's,
V-type ATPases,
F-type ATPases, and
ABC binding cassettes.
Secondary active transport
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular ...
involves the use of an
electrochemical gradient
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts:
* The chemical gradient, or difference in Concentration, solute concentration across ...
, and does not use energy produced in the cell. Secondary active transport commonly uses types of carrier proteins, typically
symporter
A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across th ...
s and
antiporter
An antiporter (also called exchanger or counter-transporter) is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane. It is a type of cotransporte ...
s. Symporter proteins couple the transport of one molecule down its concentration gradient to the transport of another molecule against its concentration gradient, and both molecules diffuse in the same direction. Antiporter proteins transport one molecule down its concentration gradient to transport another molecule against its concentration gradient, but the molecules diffuse in opposite directions. As symporters and antiporters are involved in coupling the transport of two molecules, they are commonly referred to as
cotransporters. Unlike channel proteins which only transport substances through membranes passively, carrier proteins can transport ions and molecules either passively through facilitated diffusion, or via secondary active transport. A carrier protein is required to move particles from areas of low concentration to areas of high concentration. These carrier proteins have receptors that bind to a specific molecule (substrate) needing transport. The molecule or ion to be transported (the substrate) must first bind at a binding site at the carrier molecule, with a certain binding affinity. Following binding, and while the binding site is facing the same way, the carrier will capture or occlude (take in and retain) the
substrate within its molecular structure and cause an internal translocation so that the opening in the protein now faces the other side of the plasma membrane. The carrier protein substrate is released at that site, according to its binding affinity there.
Facilitated diffusion
Facilitated diffusion
Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembr ...
is the passage of molecules or ions across a biological membrane through specific transport proteins and requires no energy input. Facilitated diffusion is used especially in the case of large polar molecules and charged ions; once such ions are dissolved in water they cannot diffuse freely across cell membranes due to the hydrophobic nature of the fatty acid tails of the phospholipids that make up the bilayers.
The type of carrier proteins used in facilitated diffusion is slightly different from those used in active transport. They are still transmembrane carrier proteins, but these are gated transmembrane channels, meaning they do not internally translocate, nor require ATP to function. The substrate is taken in one side of the gated carrier, and without using ATP the substrate is released into the cell. Facilitated diffusion does not require the use of ATP as facilitated diffusion, like simple diffusion, transports molecules or ions along their concentration gradient.
Osmosis
Osmosis
Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively permeable membrane, selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of ...
is the passive diffusion of water across a cell membrane from an area of high concentration to an area of low concentration. Since Osmosis is a passive process, like facilitated diffusion and simple diffusion, it does not require the use of ATP. Osmosis is important in regulating the balance of water and salt within cells, thus it plays a critical role in maintaining homeostasis.
Aquaporin
Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of ...
s are integral membrane proteins that allow for the rapid passage of water and glycerol through membranes. The aquaporin monomers consist of six transmembrane alpha-helix domains and these monomers can assemble to form the aquaporin proteins. As four of these monomers come together to form the aquaporin protein, it is known as a
homotetramer, meaning it is made up of four identical subunits. All aquaporins are tetrameric membrane integral proteins, and the water passes through each individual monomer channel rather than between all of the four channels. Since aquaporins are transmembrane channels for the diffusion of water, the channels that make up the aquaporin are typically lined with hydrophilic side chains to allow water to pass through.
Reverse diffusion
Reverse transport, or ''transporter reversal'', is a phenomenon in which the substrates of a membrane transport protein are moved in the opposite direction to that of their typical movement by the transporter.
Transporter reversal typically occurs when a membrane transport protein is
phosphorylated
In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols:
:
This equation can be writt ...
by a particular
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them ( phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a f ...
, which is an
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that adds a
phosphate
Phosphates are the naturally occurring form of the element phosphorus.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
group to proteins.
Types
(Grouped by
Transporter Classification database categories)
1: Channels/pores
* α-helical protein channels such as
voltage-gated ion channel
Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in a Cell (biology), cell's electrical membrane potential near the channel. The membrane potential alters the conformation of t ...
(VIC),
ligand-gated ion channels
Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
(LGICs)
* β-barrel porins such as
aquaporin
Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of ...
* channel-forming toxins, including
colicins
A colicin is a type of bacteriocin produced by and toxic to some strains of ''Escherichia coli''. Colicins are released into the environment to reduce competition from other bacterial strains. Colicins bind to outer membrane receptors, using the ...
,
diphtheria toxin
Diphtheria toxin is an exotoxin secreted mainly by '' Corynebacterium diphtheriae'' but also by ''Corynebacterium ulcerans'' and '' Corynebacterium pseudotuberculosis'', the pathogenic bacterium that causes diphtheria. The toxin gene is enco ...
, and others
* Nonribosomally synthesized channels such as
gramicidin
*
Holins; which function in export of enzymes that digest bacterial cell walls in an early step of cell lysis.
Facilitated diffusion occurs in and out of the cell membrane via channels/pores and carriers/porters.
Note:
* Channels:
Channels are either in open state or closed state. When a channel is opened with a slight conformational switch, it is open to both environment simultaneously (extracellular and intracellular)
*

Pores:
Pores are continuously open to these both environment, because they do not undergo conformational changes. They are always open and active.
2: Electrochemical potential-driven transporters
Also named carrier proteins or secondary carriers.
* 2.A: Porters (
uniporters,
symporters,
antiporters),
SLCs.
**
Excitatory amino acid transporters (EAATs)
***
EAAT1
***
EAAT2
***
EAAT3
***
EAAT4
***
EAAT5
**
Glucose transporter
Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose across the plasma membrane, a process known as facilitated diffusion. Because glucose is a vital source of energy for all life, these transporte ...
**
Monoamine transporter
Monoamine transporters (MATs) are proteins that function as integral Cell membrane, plasma-membrane Neurotransmitter transporter, transporters to regulate concentrations of extracellular monoamine neurotransmitters. The three major classes are se ...
s, including:
***
Dopamine transporter
The dopamine transporter (DAT, also sodium-dependent dopamine transporter) is a membrane-spanning protein coded for in humans by the ''SLC6A3'' gene (also known as ''DAT1''), that pumps the neurotransmitter dopamine out of the synaptic cleft ba ...
(DAT)
***
Norepinephrine transporter
The norepinephrine transporter (NET), also known as noradrenaline transporter (NAT), is a protein that in humans is encoded by the solute carrier family 6 member 2 (SLC6A2) gene.
NET is a monoamine transporter and is responsible for the sodium ...
(NET)
***
Serotonin transporter
The serotonin transporter (SERT or 5-HTT) also known as the sodium-dependent serotonin transporter and solute carrier family 6 member 4 is a protein that in humans is encoded by the SLC6A4 gene. SERT is a type of monoamine transporter protein t ...
(SERT)
***
Vesicular monoamine transporters (VMAT)
**
Adenine nucleotide translocator (ANT)
* 2.B: Nonribosomally synthesized porters, such as:
** The
Nigericin family
** The
Ionomycin family
* 2.C: Ion-gradient-driven energizers
3: Primary Active Transporters
* 3.A: P-P-bond-hydrolysis-driven transporters (a.k.a. ATP-driven pumps, or transport ATPases):
**
ATP-binding cassette transporter
The ABC transporters, ATP synthase (ATP)-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene family, gene families. It is represented in all extant taxon, extant Phyl ...
(ABC transporter), such as
MDR,
CFTR
**
V-type ATPase ; ( "V" related to vacuolar ).
**
P-type ATPase
The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon thei ...
; ( "P" related to phosphorylation), such as:
***
Na+/K+-ATPase
***
Plasma membrane Ca2+ ATPase
***
Proton pump
A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction:
: n one side of a biological membrane/sub> + energy n the other side of the m ...
**
F-type ATPase; ("F" related to factor), including: mitochondrial
ATP synthase
ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed ...
, chloroplast ATP synthase1

* 3.B: Decarboxylation-driven transporters
* 3.C: Methyltransfer-driven transporters
* 3.D: Oxidoreduction-driven transporters
* 3.E: Light absorption-driven transporters, such as
rhodopsin
Rhodopsin, also known as visual purple, is a protein encoded by the ''RHO'' gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rod cells. Rhodopsin mediates dim ...
4: Group translocators
The group translocators provide a special mechanism for the phosphorylation of sugars as they are transported into bacteria (PEP group translocation)
5: Electron carriers
The transmembrane electron transfer carriers in the membrane include two-electron carriers, such as the disulfide bond oxidoreductases (DsbB and DsbD in E. coli) as well as one-electron carriers such as NADPH oxidase. Often these redox proteins are not considered transport proteins.
Relevant Examples
GLUT 1
Every carrier protein, especially within the same cell membrane, is specific to one type or family of molecules.
GLUT1
Glucose transporter 1 (or GLUT1), also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), is a uniporter protein that in humans is encoded by the ''SLC2A1'' gene. GLUT1 facilitates the transport of glucose acro ...
is a named carrier protein found in almost all animal cell membranes that transports glucose across the bilayer. This protein is a
uniporter, meaning it transports glucose along its concentration in a singular direction. It is an integral membrane protein carrier with a hydrophilic interior, which allows it to bind to glucose. As GLUT 1 is a type of carrier protein, it will undergo a conformational change to allow glucose to enter the other side of the plasma membrane. GLUT 1 is commonly found in the red blood cell membranes of mammals.
Sodium/Potassium Channels
While there are many examples of channels within the human body, two notable ones are sodium and potassium channels.
Potassium channel
Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of ...
s are typically involved in the transport of potassium ions across the cell membrane to the outside of the cell, which helps maintain the negative membrane potential of cells. As there are more potassium channels than sodium channels, more potassium flows out of the cell than sodium into a cell, thus why the membrane potential is negative.
Sodium channel
Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell (biology), cell's cell membrane, membrane. They belong to the Cation channel superfamily, superfamily of cation channels.
Classific ...
s are typically involved in the transport of sodium ions across the cell membrane into the cell. These channels are commonly associated with excitable neurons, as an influx of sodium can trigger depolarization, which in turn propagates an action potential. As these proteins are types of channel proteins, they do not undergo a change of conformation after binding their respective substrates.
Other Examples
Other specific carrier proteins also help the body function in important ways. Cytochromes operate in the
electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
as carrier proteins for electrons.
Pathology
A number of inherited diseases involve defects in carrier proteins in a particular substance or group of cells. Cysteinuria (cysteine in the urine and the bladder) is such a disease involving defective cysteine carrier proteins in the kidney cell membranes. This transport system normally removes cysteine from the fluid destined to become urine and returns this essential amino acid to the blood. When this carrier malfunctions, large quantities of cysteine remain in the urine, where it is relatively insoluble and tends to precipitate. This is one cause of urinary stones. Some vitamin carrier proteins have been shown to be overexpressed in patients with malignant disease. For example, levels of
riboflavin carrier protein (RCP) have been shown to be significantly elevated in people with
breast cancer
Breast cancer is a cancer that develops from breast tissue. Signs of breast cancer may include a Breast lump, lump in the breast, a change in breast shape, dimpling of the skin, Milk-rejection sign, milk rejection, fluid coming from the nipp ...
.
See also
*
Cotransport
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular ...
*
Cotransporter
Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They ...
*
C14orf102, a 3810bp protein-encoding gene
*
Ion channel
Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by Gating (electrophysiol ...
*
Permease
*
P-loop
The Walker A and Walker B motifs are protein sequence motifs, known to have highly conserved three-dimensional structures. These were first reported in ATP-binding proteins by Walker and co-workers in 1982.
Of the two motifs, the A motif is ...
*
Solute carrier family
The solute carrier (SLC) group of membrane transport proteins include over 400 members organized into 66 families. Most members of the SLC group are located in the cell membrane. The SLC gene nomenclature system was originally proposed by the HUGO ...
(classification)
*
TC number (classification)
*
Translocase
Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These Enzyme, enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reactio ...
*
Flippases
*
Vesicular transport protein
*
Endocytosis
Endocytosis is a cellular process in which Chemical substance, substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a Vesicle (biology and chem ...
References
Sources
*
*
External links
*
{{Ion pumps
*
Transmembrane transporters