HOME
*





Lexicographic Dominance
Lexicographic dominance is a total order between random variables. It is a form of stochastic ordering. It is defined as follows. Random variable A has lexicographic dominance over random variable B (denoted A \succ_ B) if one of the following holds: * A has a higher probability than B of receiving the best outcome. * A and B have an equal probability of receiving the best outcome, but A has a higher probability of receiving the 2nd-best outcome. * A and B have an equal probability of receiving the best and 2nd-best outcomes, but A has a higher probability of receiving the 3rd-best outcome. In other words: let ''k'' be the first index for which the probability of receiving the k-th best outcome is different for A and B. Then this probability should be higher for A. Variants Upward lexicographic dominance is defined as follows. Random variable A has upward lexicographic dominance over random variable B (denoted A \succ_ B) if one of the following holds: * A has a ''lower'' probab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Ordering
In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable A may be neither stochastically greater than, less than nor equal to another random variable B. Many different orders exist, which have different applications. Usual stochastic order A real random variable A is less than a random variable B in the "usual stochastic order" if :\Pr(A>x) \le \Pr(B>x)\textx \in (-\infty,\infty), where \Pr(\cdot) denotes the probability of an event. This is sometimes denoted A \preceq B or A \le_ B. If additionally \Pr(A>x) x) for some x, then A is stochastically strictly less than B, sometimes denoted A \prec B. In decision theory, under this circumstance ''B'' is said to be first-order stochastically dominant over ''A''. Characterizations The following rules describe situations when one random variable is stochastically less than or equal to another. Stri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Dominance
Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance. Stochastic dominance does not give a total order, but rather only a partial order: for some pairs of gambles, neither one stochastically dominates the other, since different members of the broad class of decision-makers will differ regarding which gamble is preferable without them generally being considered to be equally attractive. Throughout the article, \rho, \nu stand for probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Social Choice Theory
Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a ''collective decision'' or ''social welfare'' in some sense.Amartya Sen (2008). "Social Choice,". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> Whereas choice theory is concerned with individuals making choices based on their preferences, social choice theory is concerned with how to translate the preferences of individuals into the preferences of a group. A non-theoretical example of a collective decision is enacting a law or set of laws under a constitution. Another example is voting, where individual preferences over candidates are collected to elect a person that best represents the group's preferences. Social choice blends elements of welfare economics and public choice theory. It is methodologically individualistic, in that it aggregates preferences and behaviors of individual member ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strategyproofness
In game theory, an asymmetric game where players have private information is said to be strategy-proof or strategyproof (SP) if it is a weakly-dominant strategy for every player to reveal his/her private information, i.e. given no information about what the others do, you fare best or at least not worse by being truthful. SP is also called truthful or dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility. An SP game is not always immune to collusion, but its robust variants are; with group strategyproofness no group of people can collude to misreport their preferences in a way that makes every member better off, and with strong group strategyproofness no group of people can collude to misreport their preferences in a way that makes at least one member of the group better off without making any of the remaining members worse off. Examples Typical examples of SP mechanisms are majority voting between two alternatives, second- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinal Pareto Efficiency
Ordinal Pareto efficiency refers to several adaptations of the concept of Pareto-efficiency to settings in which the agents only express ordinal utilities over items, but not over bundles. That is, agents rank the items from best to worst, but they do not rank the subsets of items. In particular, they do not specify a numeric value for each item. This may cause an ambiguity regarding whether certain allocations are Pareto-efficient or not. As an example, consider an economy with three items and two agents, with the following rankings: * Alice: x > y > z. * George: x > z > y. Consider the allocation lice: x, George: y,z Whether or not this allocation is Pareto-efficient depends on the agents' numeric valuations. For example: * It is possible that Alice prefers to and George prefers to (for example: Alice's valuations for x,y,z are 8,7,6 and George's valuations are 7,1,2, so the utility profile is 8,3). Then the allocation is not Pareto-efficient, since both Alice and George wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-freeness
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fair Random Assignment
Fair random assignment (also called probabilistic one-sided matching) is a kind of a fair division problem. In an ''assignment problem'' (also called '' house-allocation problem'' or '' one-sided matching''), there ''m'' objects and they have to be allocated among ''n'' agents, such that each agent receives at most one object. Examples include the assignment of jobs to workers, rooms to housemates, dormitories to students, time-slots to users of a common machine, and so on. In general, a fair assignment may be impossible to attain. For example, if Alice and Batya both prefer the eastern room to the western room, only one of them will get it and the other will be envious. In the random assignment setting, fairness is attained using a lottery. So in the simple example above, Alice and Batya will toss a fair coin and the winner will get the eastern room. History Random assignment is mentioned already in the Bible: a lottery was used to allocate the lands of Canaan among the Tribes o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]