HOME
*





Fair Random Assignment
Fair random assignment (also called probabilistic one-sided matching) is a kind of a fair division problem. In an ''assignment problem'' (also called '' house-allocation problem'' or '' one-sided matching''), there ''m'' objects and they have to be allocated among ''n'' agents, such that each agent receives at most one object. Examples include the assignment of jobs to workers, rooms to housemates, dormitories to students, time-slots to users of a common machine, and so on. In general, a fair assignment may be impossible to attain. For example, if Alice and Batya both prefer the eastern room to the western room, only one of them will get it and the other will be envious. In the random assignment setting, fairness is attained using a lottery. So in the simple example above, Alice and Batya will toss a fair coin and the winner will get the eastern room. History Random assignment is mentioned already in the Bible: a lottery was used to allocate the lands of Canaan among the Tribes o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth Observation Satellite, Earth observation satellites. It is an active research area in mathematics, economics (especially social choice theory), dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediation, mediator but certainly not an arbitration, arbiter as only the players really know how they value the goods. The archetypal fair division algorithm is divide and choose. It demonstrates that two agents with different tastes can divide a cake such that each of them believes that he got the best piece. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-freeness
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fair Item Allocation
Fair item allocation is a kind of a fair division problem in which the items to divide are ''discrete'' rather than continuous. The items have to be divided among several partners who value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios: * Several heirs want to divide the inherited property, which contains e.g. a house, a car, a piano and several paintings. * Several lecturers want to divide the courses given in their faculty. Each lecturer can teach one or more whole courses. *White elephant gift exchange parties The indivisibility of the items implies that a fair division may not be possible. As an extreme example, if there is only a single item (e.g. a house), it must be given to a single partner, but this is not fair to the other partners. This is in contrast to the fair cake-cutting problem, where the dividend is divisible and a fair division always exists. In some cases, the indivisibility p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rental Harmony
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem. In the typical setting, there are n partners who rent together an n-room house for cost fixed by the homeowner. Each housemate may have different preferences — one may prefer a large room, another may prefer a room with a view to the main road, etc. The following two problems should be solved simultaneously: * (a) Assign a room to each partner, * (b) Determine the amount each partner should pay, such that the sum of payments equals the fixed cost. There are several properties that we would like the assignment to satisfy. * Non-negativity (NN): all prices must be 0 or more: no partner should be paid to get a room. * Envy-freeness (EF): Given a pricing scheme (an assignment of rent to rooms), we say that a partner ''prefers'' a given room if he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Risk-averse
In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome. Risk aversion explains the inclination to agree to a situation with a more predictable, but possibly lower payoff, rather than another situation with a highly unpredictable, but possibly higher payoff. For example, a risk-averse investor might choose to put their money into a bank account with a low but guaranteed interest rate, rather than into a stock that may have high expected returns, but also involves a chance of losing value. Example A person is given the choice between two scenarios: one with a guaranteed payoff, and one with a risky payoff with same average value. In the former scenario, the person receives $50. In the uncertain scenario, a coin is flipped to decide whether the person receives $100 or nothing. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Risk-seeking
In accounting, finance, and economics, a risk-seeker or risk-lover is a person who has a preference ''for'' risk. While most investors are considered risk ''averse'', one could view casino-goers as risk-seeking. A common example to explain risk-seeking behaviour is; If offered two choices; either $50 as a sure thing, or a 50% chance each of either $100 or nothing, a risk-seeking person would prefer the gamble. Even though the gamble and the "sure thing" have the same expected value, the preference for risk makes the gamble's expected utility for the individual much higher. The Utility Function and Risk-Seekers Choice under uncertainty is when a person facing a choice is not certain of the possible outcomes or their probability of occurring. The standard way to model how people choose under uncertain condition, is by using expected utility. In order to calculate expected utility, a utility function 'u' is developed in order to translate money into Utility. Therefore, if a pe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Risk Neutral Preferences
In economics and finance, risk neutral preferences are preferences that are neither risk averse nor risk seeking. A risk neutral party's decisions are not affected by the degree of uncertainty in a set of outcomes, so a risk neutral party is indifferent between choices with equal expected payoffs even if one choice is riskier. For example, if offered either \$50 or a 50\% chance each of \$100 and \$0, a risk neutral person would have no preference. In contrast, a risk averse person would prefer the first offer, while a risk seeking person would prefer the second. Theory of the firm In the context of the theory of the firm, a risk neutral firm facing risk about the market price of its product, and caring only about profit, would maximize the expected value of its profit (with respect to its choices of labor input usage, output produced, etc.). But a risk averse firm in the same environment would typically take a more cautious approach. Portfolio theory In portfolio choice,Merto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Dominance
Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable A may be neither stochastically greater than, less t .... The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preference (economics), preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance. Stochastic dominance does not give a total order, but rather only a partial order: for some pairs of gambles, nei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Column Generation
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables. Then iteratively, variables that have the potential to improve the objective function are added to the program. Once it is possible to demonstrate that adding new variables would no longer improve the value of the objective function, the procedure stops. The hope when applying a column generation algorithm is that only a very small fraction of the variables will be generated. This hope is supported by the fact that in the optimal solution, most variables will be non-basic and assume a value of zero, so the optimal solution can be found without them. In many cases, this method allows to solve large linear programs that would otherwise be intractable. The classical example of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation Matrix
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say , represents a permutation of elements and, when used to multiply another matrix, say , results in permuting the rows (when pre-multiplying, to form ) or columns (when post-multiplying, to form ) of the matrix . Definition Given a permutation of ''m'' elements, :\pi : \lbrace 1, \ldots, m \rbrace \to \lbrace 1, \ldots, m \rbrace represented in two-line form by :\begin 1 & 2 & \cdots & m \\ \pi(1) & \pi(2) & \cdots & \pi(m) \end, there are two natural ways to associate the permutation with a permutation matrix; namely, starting with the ''m'' × ''m'' identity matrix, , either permute the columns or permute the rows, according to . Both methods of defining permutation matrices appear in the literature and the properties expressed in one representation can be easily converted to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birkhoff Algorithm
Birkhoff's algorithm (also called Birkhoff-von-Neumann algorithm) is an algorithm for decomposing a bistochastic matrix into a convex combination of permutation matrices. It was published by Garrett Birkhoff in 1946. It has many applications. One such application is for the problem of fair random assignment: given a randomized allocation of items, Birkhoff's algorithm can decompose it into a lottery on deterministic allocations. Terminology A ''bistochastic matrix'' (also called: ''doubly-stochastic'') is a matrix in which all elements are greater than or equal to 0 and the sum of the elements in each row and column equals 1. An example is the following 3-by-3 matrix: \begin 0.2 & 0.3 & 0.5 \\ 0.6 & 0.2 & 0.2 \\ 0.2 & 0.5 & 0.3 \end A '' permutation matrix'' is a special case of a bistochastic matrix, in which each element is either 0 or 1 (so there is exactly one "1" in each row and each column). An example is the following 3-by-3 matrix: \begin 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lexicographic Dominance
Lexicographic dominance is a total order between random variables. It is a form of stochastic ordering. It is defined as follows. Random variable A has lexicographic dominance over random variable B (denoted A \succ_ B) if one of the following holds: * A has a higher probability than B of receiving the best outcome. * A and B have an equal probability of receiving the best outcome, but A has a higher probability of receiving the 2nd-best outcome. * A and B have an equal probability of receiving the best and 2nd-best outcomes, but A has a higher probability of receiving the 3rd-best outcome. In other words: let ''k'' be the first index for which the probability of receiving the k-th best outcome is different for A and B. Then this probability should be higher for A. Variants Upward lexicographic dominance is defined as follows. Random variable A has upward lexicographic dominance over random variable B (denoted A \succ_ B) if one of the following holds: * A has a ''lower'' probab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]