General Transcription Factor
General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites ( promoter) on DNA to activate transcription of genetic information from DNA to messenger RNA. GTFs, RNA polymerase, and the mediator (a multi-protein complex) constitute the basic transcriptional apparatus that first bind to the promoter, then start transcription. GTFs are also intimately involved in the process of gene regulation, and most are required for life. A transcription factor is a protein that binds to specific DNA sequences ( enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase. As a class of protein, general transcription factors bind to promoters along the DNA sequence or form a large transcription p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Transcription Factors
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization (body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are approximately 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Annual Review Of Biochemistry
''Annual Review of Biochemistry'' is an annual peer-reviewed scientific journal published by Annual Reviews, a nonprofit scientific publisher. Its first volume was published in 1932, and its founding editor was J. Murray Luck. The current editor is Roger D. Kornberg. The journal focuses on molecular biology and biological chemistry review articles. As of 2024, ''Journal Citation Reports'' gives the journal an impact factor of 12.1, ranking it fourteenth out of 313 journals in the category "Biochemistry and Molecular Biology". As of 2023, it is being published as open access, under the Subscribe to Open model. History The ''Annual Review of Biochemistry'' was the creation of Stanford University chemist and professor J. Murray Luck. In 1930, Luck offered a course on current research in biochemistry to graduate students. In designing the course, he said he felt "knee-deep in trouble", as he believed he was sufficiently knowledgeable in only a few areas of biochemistry. He consid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
TFIIF
Transcription factor II F (TFIIF) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. TFIIF is encoded by the , , and genes. TFIIF binds to RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA pol ... when the enzyme is already unbound to any other transcription factor, thus preventing it from contacting DNA outside the promoter. Furthermore, TFIIF stabilizes the RNA polymerase II while it's contacting TBP and TFIIB. See also * TFIIA * TFIIB * TFIID * TFIIE * TFIIH References External links * Helicases Molecular genetics Proteins Gene expression Transcription factors {{genetics-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
TFIID
Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins known as SRB proteins. Before the start of transcription, the transcription Factor II D (TFIID) complex binds to the core promoter DNA of the gene through specific recognition of promoter sequence motifs, including the TATA box, Initiator, Downstream Promoter, Motif Ten, or Downstream Regulatory elements. Functions * Coordinates the activities of more than 70 polypeptides required for initiation of transcription by RNA polymerase II * Binds to the core promoter to position the polymerase properly * Serves as the scaffold for assembly of the remainder of the transcription complex * Acts as a cha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
B Recognition Element
The B recognition element (BRE) is a DNA sequence found in the promoter region of most genes in eukaryotes and Archaea. The BRE is a cis-regulatory element that is found immediately near TATA box, and consists of 7 nucleotides. There are two sets of BREs: one (BREu) found immediately upstream of the TATA box, with the consensus SSRCGCC; the other (BREd) found around 7 nucleotides downstream, with the consensus RTDKKKK. The BREu was discovered in 1998 by Richard H. EbRichard Ebright and co-workers. The BREd was named in 2005 by Deng and Roberts; such a downstream recognition was reported earlier in 2000 in Tsai and Sigler's crystal structure. Binding The transcription factor II B (TFIIB) recognizes either BRE and binds to it. Both BREs work in conjunction with the TATA box (and TATA box binding protein), and have various effects on levels of transcription. TFIIB uses the cyclin-like repeats to recognize DNA. The C-terminal alpha helix, alpha helices of TFIIB intercalate with the D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
TFIIB
Transcription factor II B (TFIIB) is a general transcription factor that is involved in the formation of the RNA polymerase II preinitiation complex (PIC) and aids in stimulating transcription initiation. TFIIB is localised to the nucleus and provides a platform for PIC formation by binding and stabilising the DNA-TBP (TATA-binding protein) complex and by recruiting RNA polymerase II and other transcription factors. It is encoded by the gene, and is homologous to archaeal transcription factor B and analogous to bacterial sigma factors. Structure TFIIB is a single 33kDa polypeptide consisting of 316 amino acids. TFIIB is made up of four functional regions: the C-terminal core domain; the B linker; the B reader and the amino terminal zinc ribbon. TFIIB makes protein-protein interactions with the TATA-binding protein (TBP) subunit of transcription factor IID, and the RPB1 subunit of RNA polymerase II. TFIIB makes sequence-specific protein-DNA interactions with the B rec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
TFIIA
Transcription factor TFIIA is a nuclear protein involved in the RNA polymerase II-dependent transcription of DNA. TFIIA is one of several general (basal) transcription factors ( GTFs) that are required for all transcription events that use RNA polymerase II. Other GTFs include TFIID, a complex composed of the TATA binding protein TBP and TBP-associated factors (TAFs), as well as the factors TFIIB, TFIIE, TFIIF, and TFIIH. Together, these factors are responsible for promoter recognition and the formation of a transcription preinitiation complex (PIC) capable of initiating RNA synthesis from a DNA template. Functions TFIIA interacts with the TBP subunit of TFIID and aids in the binding of TBP to TATA-box containing promoter DNA. Interaction of TFIIA with TBP facilitates formation of and stabilizes the preinitiation complex. Interaction of TFIIA with TBP also results in the exclusion of negative (repressive) factors that might otherwise bind to TBP and interfere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Genes & Development
''Genes & Development'' is a peer-reviewed scientific journal covering molecular biology, molecular genetics, cell biology, and development. It was established in 1987 and is published twice monthly by Cold Spring Harbor Laboratory Press in association with The Genetics Society. According to the ''Journal Citation Reports'', the journal has a 2012 impact factor of 12.44, ranking it 14th out of 181 journals in the category "Cell Biology", third out of 40 journals in the category "Developmental Biology", and 7th out of 158 journals in the category "Genetics & Heredity". Over 1999–2004, the journal was ranked fifth in the "Molecular Biology and Genetics" category according to ''ScienceWatch'', with an average of 47 citations per paper. All issues are available online via the journal website as PDFs, with a text version additionally available from August 1997. Content over 6 months old is freely available. Since 1989, the editor-in-chief has been Terri Grodzicker (Cold Spring Harbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
RNA Polymerase II
RNA polymerase II (RNAP II and Pol II) is a Protein complex, multiprotein complex that Transcription (biology), transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNA polymerase, RNAP enzymes found in the nucleus of eukaryote, eukaryotic cells. A 550 kDa complex of 12 subunits, RNAP II is the most studied type of RNA polymerase. A wide range of transcription factors are required for it to bind to upstream gene promoter (biology), promoters and begin transcription. Discovery Early studies suggested a minimum of two RNAPs: one which synthesized rRNA in the nucleolus, and one which synthesized other RNA in the nucleoplasm, part of the nucleus but outside the nucleolus. In 1969, biochemists Robert G. Roeder and William J. Rutter, William Rutter discovered there are total three distinct nuclear RNA polymerases, an additional RNAP that was responsible for transcription of some kind of RNA in the nucleoplasm. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Eukaryotes
The eukaryotes ( ) constitute the domain of Eukaryota or Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, seaweeds, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but given their generally much larger size, their collective global biomass is much larger than that of prokaryotes. The eukaryotes emerged within the archaeal kingdom Promethearchaeati and its sole phylum Promethearchaeota. This implies that there are only two domains of life, Bacteria and Archaea, with eukaryotes incorporated among the Archaea. Eukaryotes first emerged during the Paleoproterozoic, likely as flagellated cells. The leading evolutionary theory is they were created by symbiogenesis between an anaerobic Promethearchaeati archaean and an aerobic proteobacterium, which form ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Archaea
Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even though the domain Archaea Cladistics, cladistically includes eukaryotes, the term "archaea" (: archaeon , from the Greek "ἀρχαῖον", which means ancient) in English still generally refers specifically to prokaryotic members of Archaea. Archaea were initially Taxonomy (biology), classified as bacteria, receiving the name archaebacteria (, in the Archaebacteria Kingdom (biology), kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from Bacteria and Eukaryote, Eukaryota. Archaea are further divided into multiple recognized phylum, phyla. Classification is difficult because most have not been Isolation (microbiology), isolated in a laboratory and have been detected only by their Gene, gene s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |