Translation (biology)
   HOME

TheInfoList



OR:

In
molecular biology Molecular biology is the branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interact ...
and
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian fr ...
, translation is the process in which ribosomes in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryote, eukaryotic Cell (biology), cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear envelope, nuc ...
or
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
synthesize proteins after the process of transcription of DNA to RNA in the cell's
nucleus Nucleus (plural, : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA ...
. The entire process is called
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
. In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific
amino acid Amino acids are organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon chemical bond, bonds. Due to carbon's ability to Catenation, catenate (form chains with ot ...
chain, or
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called Protein, proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapepti ...
. The polypeptide later folds into an active
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabo ...
and performs its functions in the cell. The
ribosome Ribosomes ( ) are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specifie ...
facilitates decoding by inducing the binding of complementary
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the Messenger RNA, mRNA a ...
anticodon Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the Messenger RNA, mRNA a ...
sequences to mRNA
codons The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into protein Proteins are large biomolecules and macromolecules ...
. The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome. Translation proceeds in three phases: # Initiation: The ribosome assembles around the target mRNA. The first tRNA is attached at the
start codon The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a N-formylmethionine N-Formylmethionine, (fMet) in bacteria, mitochondria a ...
. # Elongation: The last tRNA validated by the small ribosomal subunit (''accommodation'') transfers the amino acid it carries to the large ribosomal subunit which binds it to the one of the precedingly admitted tRNA (''transpeptidation''). The ribosome then moves to the next mRNA codon to continue the process (''translocation''), creating an amino acid chain. # Termination: When a stop codon is reached, the ribosome releases the polypeptide. The ribosomal complex remains intact and moves on to the next mRNA to be translated. In
prokaryotes A prokaryote () is a Unicellular organism, single-celled organism that lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek language, Greek wikt:πρό#Ancient Greek, πρό (, 'before') a ...
(bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the
ribosome Ribosomes ( ) are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specifie ...
bind to the mRNA. In
eukaryotes Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
, translation occurs in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryote, eukaryotic Cell (biology), cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear envelope, nuc ...
or across the membrane of the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
in a process called co-translational translocation. In co-translational translocation, the entire ribosome/mRNA complex binds to the outer membrane of the
rough endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
(ER) and the new protein is synthesized and released into the ER; the newly created polypeptide can be stored inside the ER for future vesicle transport and
secretion file:Secretory mechanism.jpg, 440px Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell (biology), cell or gland. In contrast, excretion is the removal of certain substances or waste pr ...
outside the cell, or immediately secreted. Many types of transcribed RNA, such as transfer RNA, ribosomal RNA, and small nuclear RNA, do not undergo translation into proteins. A number of
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting pathogenic bacteria, bacterial infections, and antibiotic medications are widely used in the therapy, ...
s act by inhibiting translation. These include anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin, and puromycin. Prokaryotic ribosomes have a different structure from that of eukaryotic ribosomes, and thus antibiotics can specifically target bacterial infections without any harm to a eukaryotic host's cells.


Basic mechanisms

The basic process of protein production is addition of one amino acid at a time to the end of a protein. This operation is performed by a
ribosome Ribosomes ( ) are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specifie ...
. A ribosome is made up of two subunits, a small subunit and a large subunit. These subunits come together before translation of mRNA into a protein to provide a location for translation to be carried out and a polypeptide to be produced. The choice of amino acid type to add is determined by an mRNA molecule. Each amino acid added is matched to a three nucleotide subsequence of the mRNA. For each such triplet possible, the corresponding amino acid is accepted. The successive amino acids added to the chain are matched to successive nucleotide triplets in the mRNA. In this way the sequence of nucleotides in the template mRNA chain determines the sequence of amino acids in the generated amino acid chain. Addition of an amino acid occurs at the
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
of the peptide and thus translation is said to be amine-to-carboxyl directed. The mRNA carries genetic information encoded as a ribonucleotide sequence from the chromosomes to the ribosomes. The ribonucleotides are "read" by translational machinery in a sequence of
nucleotide Nucleotides are Organic compound, organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential ...
triplets called codons. Each of those triplets codes for a specific
amino acid Amino acids are organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon chemical bond, bonds. Due to carbon's ability to Catenation, catenate (form chains with ot ...
. The
ribosome Ribosomes ( ) are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specifie ...
molecules translate this code to a specific sequence of amino acids. The ribosome is a multisubunit structure containing rRNA and proteins. It is the "factory" where amino acids are assembled into proteins. tRNAs are small noncoding RNA chains (74–93 nucleotides) that transport amino acids to the ribosome. tRNAs have a site for amino acid attachment, and a site called an anticodon. The anticodon is an RNA triplet complementary to the mRNA triplet that codes for their cargo
amino acid Amino acids are organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon chemical bond, bonds. Due to carbon's ability to Catenation, catenate (form chains with ot ...
. Aminoacyl tRNA synthetases (
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
s) catalyze the bonding between specific
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the Messenger RNA, mRNA a ...
s and the
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ami ...
that their anticodon sequences call for. The product of this reaction is an aminoacyl-tRNA. In bacteria, this aminoacyl-tRNA is carried to the ribosome by EF-Tu, where mRNA codons are matched through complementary
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both ...
ing to specific
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the Messenger RNA, mRNA a ...
anticodons. Aminoacyl-tRNA synthetases that mispair tRNAs with the wrong amino acids can produce mischarged aminoacyl-tRNAs, which can result in inappropriate amino acids at the respective position in protein. This "mistranslation" of the genetic code naturally occurs at low levels in most organisms, but certain cellular environments cause an increase in permissive mRNA decoding, sometimes to the benefit of the cell. The ribosome has two binding sites for tRNA. They are the aminoacyl site (abbreviated A), the peptidyl site/ exit site (abbreviated P/E). With respect to the mRNA, the three sites are oriented 5’ to 3’ E-P-A, because ribosomes move toward the 3' end of mRNA. The A-site binds the incoming tRNA with the complementary codon on the mRNA. The P/E-site holds the tRNA with the growing polypeptide chain. When an aminoacyl-tRNA initially binds to its corresponding codon on the mRNA, it is in the A site. Then, a peptide bond forms between the amino acid of the tRNA in the A site and the amino acid of the charged tRNA in the P/E site. The growing polypeptide chain is transferred to the tRNA in the A site. Translocation occurs, moving the tRNA in the P/E site, now without an amino acid; the tRNA that was in the A site, now charged with the polypeptide chain, is moved to the P/E site and the tRNA leaves and another aminoacyl-tRNA enters the A site to repeat the process. After the new amino acid is added to the chain, and after the tRNA is released out of the ribosome and into the cytosol, the energy provided by the hydrolysis of a GTP bound to the translocase EF-G (in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometre The micrometre (Amer ...
) and a/eEF-2 (in
eukaryotes Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
and
archaea Archaea ( ; singular archaeon ) is a Domain (biology), domain of Unicellular organism, single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially Taxonomy (biology), classified as bacter ...
) moves the ribosome down one codon towards the 3' end. The energy required for translation of proteins is significant. For a protein containing ''n'' amino acids, the number of high-energy phosphate bonds required to translate it is 4''n''-1. The rate of translation varies; it is significantly higher in prokaryotic cells (up to 17–21 amino acid residues per second) than in eukaryotic cells (up to 6–9 amino acid residues per second). Even though the ribosomes are usually considered accurate and processive machines, the translation process is subject to errors that can lead either to the synthesis of erroneous proteins or to the premature abandonment of translation, either because a tRNA couples to a wrong codon or because a tRNA is coupled to the wrong amino acid. The rate of error in synthesizing proteins has been estimated to be between 1 in 105 and 1 in 103 misincorporated amino acids, depending on the experimental conditions. The rate of premature translation abandonment, instead, has been estimated to be of the order of magnitude of 10−4 events per translated codon. The correct amino acid is covalently bonded to the correct transfer RNA (tRNA) by amino acyl transferases. The amino acid is joined by its carboxyl group to the 3' OH of the tRNA by an ester bond. When the tRNA has an amino acid linked to it, the tRNA is termed "charged". Initiation involves the small subunit of the ribosome binding to the 5' end of mRNA with the help of initiation factors (IF). In bacteria and a minority of archaea, initiation of protein synthesis involves the recognition of a purine-rich initiation sequence on the mRNA called the Shine-Dalgarno sequence. The Shine-Dalgarno sequence binds to a complementary pyrimidine-rich sequence on the 3' end of the 16S rRNA part of the 30S ribosomal subunit. The binding of these complementary sequences ensures that the 30S ribosomal subunit is bound to the mRNA and is aligned such that the initiation codon is placed in the 30S portion of the P-site. Once the mRNA and 30S subunit are properly bound, an initiation factor brings the initiator tRNA-amino acid complex, f-Met-tRNA, to the 30S P site. The initiation phase is completed once a 50S subunit joins the 30 subunit, forming an active 70S ribosome. Termination of the polypeptide occurs when the A site of the ribosome is occupied by a stop codon (UAA, UAG, or UGA) on the mRNA, creating the primary structure of a protein. tRNA usually cannot recognize or bind to stop codons. Instead, the stop codon induces the binding of a release factor protein (RF1 & RF2) that prompts the disassembly of the entire ribosome/mRNA complex by the hydrolysis of the polypeptide chain from the peptidyl transferase center of the ribosome. Drugs or special sequence motifs on the mRNA can change the ribosomal structure so that near-cognate tRNAs are bound to the stop codon instead of the release factors. In such cases of 'translational readthrough', translation continues until the ribosome encounters the next stop codon. The process of translation is highly regulated in both eukaryotic and prokaryotic organisms. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell. In addition, recent work has revealed that genetic differences and their subsequent expression as mRNAs can also impact translation rate in an RNA-specific manner.


Clinical significance

Translational control is critical for the development and survival of
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Poss ...
. Cancer cells must frequently regulate the translation phase of gene expression, though it is not fully understood why translation is targeted over steps like transcription. While cancer cells often have genetically altered translation factors, it is much more common for cancer cells to modify the levels of existing translation factors. Several major oncogenic signaling pathways, including the RAS–MAPK, PI3K/AKT/mTOR, MYC, and WNT–β-catenin pathways, ultimately reprogram the genome via translation. Cancer cells also control translation to adapt to cellular stress. During stress, the cell translates mRNAs that can mitigate the stress and promote survival. An example of this is the expression of AMPK in various cancers; its activation triggers a cascade that can ultimately allow the cancer to escape
apoptosis Apoptosis (from grc, wikt:ἀπόπτωσις, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemistry, Biochemical events lead to characteristic cell changes (Morp ...
(programmed cell death) triggered by nutrition deprivation. Future cancer therapies may involve disrupting the translation machinery of the cell to counter the downstream effects of cancer.


Mathematical modeling of translation

The transcription-translation process description, mentioning only the most basic ”elementary” processes, consists of: # production of mRNA molecules (including splicing), # initiation of these molecules with help of initiation factors (e.g., the initiation can include the circularization step though it is not universally required), # initiation of translation, recruiting the small ribosomal subunit, # assembly of full ribosomes, # elongation, (i.e. movement of ribosomes along mRNA with production of protein), # termination of translation, # degradation of mRNA molecules, # degradation of proteins. The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been developed and analyzed in the last four decades. Beyond chemical kinetics, various modeling formalisms such as Totally Asymmetric Simple Exclusion Process (TASEP), Probabilistic Boolean Networks (PBN), Petri Nets and max-plus algebra have been applied to model the detailed kinetics of protein synthesis or some of its stages. A basic model of protein synthesis that takes into account all eight 'elementary' processes has been developed, following the paradigm that "useful models are simple and extendable". The simplest model ''M0'' is represented by the reaction kinetic mechanism (Figure M0). It was generalised to include 40S, 60S and initiation factors (IF) binding (Figure M1'). It was extended further to include effect of
microRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. ...
on protein synthesis. Most of models in this hierarchy can be solved analytically. These solutions were used to extract 'kinetic signatures' of different specific mechanisms of synthesis regulation.


Genetic code

It is also possible to translate either by hand (for short sequences) or by computer (after first programming one appropriately, see section below); this allows biologists and chemists to draw out the chemical structure of the encoded protein on paper. First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U Then split the RNA into triplets (groups of three bases). Note that there are 3 translation "windows", or reading frames, depending on where you start reading the code. Finally, use the table at
Genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into protein Proteins are large biomolecules and macromolecules ...
to translate the above into a structural formula as used in chemistry. This will give you the
primary structure Protein primary structure is the Biomolecular structure#Primary structure, linear sequence of amino acids in a peptide or protein. By convention, the Protein structure#Primary structure, primary structure of a protein is reported starting from the ...
of the protein. However, proteins tend to fold, depending in part on
hydrophilic A hydrophile is a molecule or other molecular entity that is intermolecular force, attracted to water molecules and tends to be dissolution (chemistry), dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clar ...
and hydrophobic segments along the chain. Secondary structure can often still be guessed at, but the proper
tertiary structure Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may inter ...
is often very hard to determine. Whereas other aspects such as the 3D structure, called
tertiary structure Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may inter ...
, of protein can only be predicted using sophisticated algorithms, the amino acid sequence, called
primary structure Protein primary structure is the Biomolecular structure#Primary structure, linear sequence of amino acids in a peptide or protein. By convention, the Protein structure#Primary structure, primary structure of a protein is reported starting from the ...
, can be determined solely from the nucleic acid sequence with the aid of a translation table. This approach may not give the correct amino acid composition of the protein, in particular if unconventional
amino acid Amino acids are organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon chemical bond, bonds. Due to carbon's ability to Catenation, catenate (form chains with ot ...
s such as
selenocysteine Selenocysteine (symbol Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the su ...
are incorporated into the protein, which is coded for by a conventional stop codon in combination with a downstream hairpin (SElenoCysteine Insertion Sequence, or SECIS). There are many computer programs capable of translating a DNA/RNA sequence into a protein sequence. Normally this is performed using the Standard Genetic Code, however, few programs can handle all the "special" cases, such as the use of the alternative initiation codons which are biologically significant. For instance, the rare alternative start codon CTG codes for
Methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical rol ...
when used as a start codon, and for Leucine in all other positions. Example: Condensed translation table for the Standard Genetic Code (from the NCBI Taxonomy webpage). AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M---------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG The "Starts" row indicate three start codons, UUG, CUG, and the very common AUG. It also indicates the first amino acid residue when interpreted as a start: in this case it is all methionine.


Translation tables

Even when working with ordinary eukaryotic sequences such as the
Yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
genome, it is often desired to be able to use alternative translation tables—namely for translation of the mitochondrial genes. Currently the following translation tables are defined by the NCBI Taxonomy Group for the translation of the sequences in GenBank: # The standard code # The vertebrate mitochondrial code # The yeast mitochondrial code # The mold, protozoan, and coelenterate mitochondrial code and the mycoplasma/spiroplasma code # The invertebrate mitochondrial code # The ciliate, dasycladacean and hexamita nuclear code # The kinetoplast code #
  • The echinoderm and flatworm mitochondrial code # The euplotid nuclear code # The bacterial, archaeal and plant plastid code # The alternative yeast nuclear code # The ascidian mitochondrial code # The alternative flatworm mitochondrial code # The ''Blepharisma'' nuclear code # The chlorophycean mitochondrial code #
  • The trematode mitochondrial code # The ''Scenedesmus obliquus'' mitochondrial code # The ''Thraustochytrium'' mitochondrial code # The Pterobranchia mitochondrial code # The candidate division SR1 and gracilibacteria code # The ''Pachysolen tannophilus'' nuclear code # The karyorelict nuclear code # The ''Condylostoma'' nuclear code # The ''Mesodinium'' nuclear code # The peritrich nuclear code # The ''Blastocrithidia'' nuclear code #
  • The Cephalodiscidae mitochondrial code


    See also

    *
    Cell (biology) The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a Cell membrane, membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of ...
    *
    Cell division Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
    * DNA codon table *
    Epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Ancient Greek, Greek prefix ''wikt:epi-, epi-'' ( "over, outside of, around") in ''epigenetics'' imp ...
    * Expanded genetic code *
    Gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
    *
    Gene regulation Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
    *
    Gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian inheritance#History, Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanin ...
    *
    Genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding gene ...
    *
    Life Life is a quality that distinguishes matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes, from that which does not, and is defined by the capacity for Cell growth, growth, reaction to Stimu ...
    * Protein methods *
    Start codon The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a N-formylmethionine N-Formylmethionine, (fMet) in bacteria, mitochondria a ...


    References


    Further reading

    * * *


    External links


    Virtual Cell Animation Collection: Introducing TranslationTranslate tool (from DNA or RNA sequence)
    Molecular biology Protein biosynthesis Gene expression Cellular processes {{Portal bar, Biology, Astronomy