Normal direction
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a normal is an
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
such as a line, ray, or
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
that is
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
to a given object. For example, the normal line to a
plane curve In mathematics, a plane curve is a curve in a plane that may be either a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic ...
at a given point is the (infinite) line perpendicular to the
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
to the curve at the point. A normal vector may have length one (a
unit vector In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction v ...
) or its length may represent the curvature of the object (a ''
curvature vector Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the ...
''); its algebraic sign may indicate sides (interior or exterior). In three dimensions, a surface normal, or simply normal, to a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
at point P is a
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
to the
tangent plane In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
of the surface at P. The word "normal" is also used as an adjective: a line ''normal'' to a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, the ''normal'' component of a force, the normal vector, etc. The concept of normality generalizes to orthogonality ( right angles). The concept has been generalized to differentiable manifolds of arbitrary dimension embedded in a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. The normal vector space or normal space of a manifold at point P is the set of vectors which are orthogonal to the
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
at P. Normal vectors are of special interest in the case of smooth curves and smooth surfaces. The normal is often used in
3D computer graphics 3D computer graphics, or “3D graphics,” sometimes called CGI, 3D-CGI or three-dimensional computer graphics are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for t ...
(notice the singular, as only one normal will be defined) to determine a surface's orientation toward a
light source Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terah ...
for
flat shading Shading refers to the depiction of depth perception in 3D models (within the field of 3D computer graphics) or illustrations (in visual art) by varying the level of darkness. Shading tries to approximate local behavior of light on the object's ...
, or the orientation of each of the surface's corners ( vertices) to mimic a curved surface with
Phong shading In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface norm ...
. The foot of a normal at a point of interest ''Q'' (analogous to the
foot of a perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
) can be defined at the point ''P'' on the surface where the normal vector contains ''Q''. The '' normal distance'' of a point ''Q'' to a curve or to a surface is the
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
between ''Q'' and its foot ''P''.


Normal to surfaces in 3D space


Calculating a surface normal

For a
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two to ...
(such as a
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colline ...
), a surface normal can be calculated as the vector cross product of two (non-parallel) edges of the polygon. For a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
given by the equation ax + by + cz + d = 0, the vector \mathbf n = (a, b, c) is a normal. For a plane whose equation is given in parametric form \mathbf(s,t) = \mathbf_0 + s \mathbf + t \mathbf, where \mathbf_0 is a point on the plane and \mathbf, \mathbf are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both \mathbf and \mathbf, which can be found as the cross product \mathbf=\mathbf\times\mathbf. If a (possibly non-flat) surface S in 3D space \R^3 is parameterized by a system of
curvilinear coordinates In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
\mathbf(s, t) = (x(s, t), y(s, t), z(s, t)), with s and t
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
variables, then a normal to ''S'' is by definition a normal to a tangent plane, given by the cross product of the partial derivatives \mathbf=\frac \times \frac. If a surface S is given implicitly as the set of points (x, y, z) satisfying F(x, y, z) = 0, then a normal at a point (x, y, z) on the surface is given by the
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
\mathbf = \nabla F(x, y, z). since the gradient at any point is perpendicular to the level set S. For a surface S in \R^3 given as the graph of a function z = f(x, y), an upward-pointing normal can be found either from the parametrization \mathbf(x,y)=(x,y,f(x,y)), giving \mathbf = \frac \times \frac = \left(1,0,\tfrac\right) \times \left(0,1,\tfrac\right) = \left(-\tfrac, -\tfrac,1\right); or more simply from its implicit form F(x, y, z) = z-f(x,y) = 0, giving \mathbf = \nabla F(x, y, z) = \left(-\tfrac, -\tfrac, 1 \right). Since a surface does not have a tangent plane at a singular point, it has no well-defined normal at that point: for example, the vertex of a
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
. In general, it is possible to define a normal almost everywhere for a surface that is
Lipschitz continuous In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there e ...
.


Choice of normal

The normal to a (hyper)surface is usually scaled to have
unit length Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (al ...
, but it does not have a unique direction, since its opposite is also a unit normal. For a surface which is the
topological boundary In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the closure of not belonging to the interior of . An element of the boundary of is called a boundary point of . The term bound ...
of a set in three dimensions, one can distinguish between the inward-pointing normal and outer-pointing normal. For an
oriented surface In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
, the normal is usually determined by the right-hand rule or its analog in higher dimensions. If the normal is constructed as the cross product of tangent vectors (as described in the text above), it is a pseudovector.


Transforming normals

When applying a transform to a surface it is often useful to derive normals for the resulting surface from the original normals. Specifically, given a 3×3 transformation matrix \mathbf, we can determine the matrix \mathbf that transforms a vector \mathbf perpendicular to the tangent plane \mathbf into a vector \mathbf^ perpendicular to the transformed tangent plane \mathbf, by the following logic: Write n′ as \mathbf. We must find \mathbf. \begin W\mathbb n \text M\mathbb t \quad \, &\text \quad 0 = (W \mathbb n) \cdot (M \mathbb t) \\ &\text \quad 0 = (W \mathbb)^\mathrm (M \mathbb) \\ &\text \quad 0 = \left(\mathbb^\mathrm W^\mathrm\right) (M \mathbb) \\ &\text \quad 0 = \mathbb^\mathrm \left(W^\mathrm M\right) \mathbb \\ \end Choosing \mathbf such that W^\mathrm M = I, or W = (M^)^\mathrm, will satisfy the above equation, giving a W \mathbb n perpendicular to M \mathbb t, or an \mathbf^ perpendicular to \mathbf^, as required. Therefore, one should use the inverse transpose of the linear transformation when transforming surface normals. The inverse transpose is equal to the original matrix if the matrix is orthonormal, that is, purely rotational with no scaling or shearing.


Hypersurfaces in ''n''-dimensional space

For an (n-1)-dimensional hyperplane in n-dimensional space \R^n given by its parametric representation \mathbf\left(t_1, \ldots, t_\right) = \mathbf_0 + t_1 \mathbf_1 + \cdots + t_\mathbf_, where \mathbf_0 is a point on the hyperplane and \mathbf_i for i = 1, \ldots, n - 1 are linearly independent vectors pointing along the hyperplane, a normal to the hyperplane is any vector \mathbf n in the
null space In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the Domain of a function, domain of the map which is mapped to the zero vector. That is, given a linear map between two vector space ...
of the matrix P = \begin\mathbf_1 & \cdots &\mathbf_\end, meaning P\mathbf n = \mathbf 0. That is, any vector orthogonal to all in-plane vectors is by definition a surface normal. Alternatively, if the hyperplane is defined as the solution set of a single linear equation a_1x_1+\cdots+a_nx_n = c, then the vector \mathbb = \left(a_1, \ldots, a_n\right) is a normal. The definition of a normal to a surface in three-dimensional space can be extended to (n - 1)-dimensional
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
s in \R^n. A hypersurface may be
locally In mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points). P ...
defined implicitly as the set of points (x_1, x_2, \ldots, x_n) satisfying an equation F(x_1, x_2, \ldots, x_n) = 0, where F is a given
scalar function In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity ( ...
. If F is continuously differentiable then the hypersurface is a differentiable manifold in the
neighbourhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
of the points where the
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
is not zero. At these points a normal vector is given by the gradient: \mathbb n = \nabla F\left(x_1, x_2, \ldots, x_n\right) = \left( \tfrac, \tfrac, \ldots, \tfrac \right)\,. The normal line is the one-dimensional subspace with basis \.


Varieties defined by implicit equations in ''n''-dimensional space

A differential variety defined by implicit equations in the n-dimensional space \R^n is the set of the common zeros of a finite set of differentiable functions in n variables f_1\left(x_1, \ldots, x_n\right), \ldots, f_k\left(x_1, \ldots, x_n\right). The Jacobian matrix of the variety is the k \times n matrix whose i-th row is the gradient of f_i. By the implicit function theorem, the variety is a manifold in the neighborhood of a point where the Jacobian matrix has rank k. At such a point P, the normal vector space is the vector space generated by the values at P of the gradient vectors of the f_i. In other words, a variety is defined as the intersection of k hypersurfaces, and the normal vector space at a point is the vector space generated by the normal vectors of the hypersurfaces at the point. The normal (affine) space at a point P of the variety is the
affine subspace In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
passing through P and generated by the normal vector space at P. These definitions may be extended to the points where the variety is not a manifold.


Example

Let ''V'' be the variety defined in the 3-dimensional space by the equations x\,y = 0, \quad z = 0. This variety is the union of the x-axis and the y-axis. At a point (a, 0, 0), where a \neq 0, the rows of the Jacobian matrix are (0, 0, 1) and (0, a, 0). Thus the normal affine space is the plane of equation x = a. Similarly, if b \neq 0, the '' normal plane'' at (0, b, 0) is the plane of equation y = b. At the point (0, 0, 0) the rows of the Jacobian matrix are (0, 0, 1) and (0, 0, 0). Thus the normal vector space and the normal affine space have dimension 1 and the normal affine space is the z-axis.


Uses

* Surface normals are useful in defining surface integrals of vector fields. * Surface normals are commonly used in
3D computer graphics 3D computer graphics, or “3D graphics,” sometimes called CGI, 3D-CGI or three-dimensional computer graphics are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for t ...
for
lighting Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylig ...
calculations (see
Lambert's cosine law In optics, Lambert's cosine law says that the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle ''θ'' between the directi ...
), often adjusted by
normal mapping In 3D computer graphics, normal mapping, or Dot3 bump mapping, is a texture mapping technique used for faking the lighting of bumps and dents – an implementation of bump mapping. It is used to add details without using more polygons. A common ...
. *
Render layers When creating computer-generated imagery, final scenes appearing in movies and television productions are usually produced by rendering more than one "layer" or "pass," which are multiple images designed to be put together through digital composi ...
containing surface normal information may be used in digital compositing to change the apparent lighting of rendered elements. * In computer vision, the shapes of 3D objects are estimated from surface normals using photometric stereo.


Normal in geometric optics

The is the outward-pointing ray
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
to the surface of an optical medium at a given point. In reflection of light, the angle of incidence (optics), angle of incidence and the angle of reflection are respectively the angle between the normal and the incident ray (on the plane of incidence) and the angle between the normal and the reflected ray.


See also

* * * * *


References


External links

* * A
explanation of normal vectors
from Microsoft's MSDN * Clear pseudocode fo
calculating a surface normal
from either a triangle or polygon. {{Authority control Surfaces Vector calculus 3D computer graphics Orthogonality