**Distributions**, also known as **Schwartz distributions** or **generalized functions**, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are distributions, such as the Dirac delta function.

A function is normally thought of as *acting* on the *points* in its domain by "sending" a point x in its domain to the point Instead of acting on points, distribution theory reinterprets functions such as as acting on *test functions* in a certain way. ** Test functions** are usually infinitely differentiable complex-valued (or sometimes real-valued) functions with compact support (bump functions are examples of test functions). Many "standard functions" (meaning for example a function that is typically encountered in a Calculus course), say for instance a continuous map can be canonically reinterpreted as acting on test functions (instead of their usual interpretation as acting on points of their domain) via the action known as "integration against a test function"; explicitly, this means that "acts on" a test function g by "sending" g to the number function is normally thought of as

In applications to physics and engineering, the space of test functions usually consists of smooth functions with compact support that are defined on some given non-empty open subset This space of test functions is denoted by or and a * distribution on U* is by definition a linear functional on that is continuous when given a topology called

There are other possible choices for the space of test functions, which lead to other different spaces of distributions. If then the use of Schwartz functions^{[note 2]} as test functions gives rise to a certain subspace of whose elements are called * tempered distributions*. These are important because they allow the Fourier transform to be extended from "standard functions" to tempered distributions. The set of tempered distributions forms a vector subspace of

There also exist other major classes of test functions that are *not* subsets of such as spaces of analytic test functions, which produce very different classes of distributions. The theory of such distributions has a different character from the previous one because there are no analytic functions with non-empty compact support.^{[note 3]} Use of analytic test functions lead to Sato's theory of hyperfunctions.

The practical use of distributions can be traced back to the use of Green functions in the 1830s to solve ordinary differential equations, but was not formalized until much later. According to Kolmogorov & Fomin (1957), generalized functions originated in the work of Sergei Sobolev (1936) on second-order hyperbolic partial differential equations, and the ideas were developed in somewhat extended form by Laurent Schwartz in the late 1940s. According to his autobiography, Schwartz introduced the term "distribution" by analogy with a distribution of electrical charge, possibly including not only point charges but also dipoles and so on. Gårding (1997) comments that although the ideas in the transformative book by Schwartz (1951) were not entirely new, it was Schwartz's broad attack and conviction that distributions would be useful almost everywhere in analysis that made the difference.

The following notation will be used throughout this article:

- is a fixed positive integer and is a fixed non-empty open subset of Euclidean space

- denotes the natural numbers.

- will denote a non-negative integer or