HOME
*





Algebraic Analysis
Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered. Microfunction Let ''M'' be a real-analytic manifold of dimension ''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\mathcal_X) \otimes \mathcal_) where * \mu_M denotes the microlocalization functor, * \mathcal_ is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microlocal Analysis
In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and paradifferential operators. The term ''microlocal'' implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension greater than one. See also *Algebraic analysis *Microfunction External linkslecture notes by Richard Melrose
Microlocal analysis, Fourier analysis Generalized functions {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Analysis
Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered. Microfunction Let ''M'' be a real-analytic manifold of dimension ''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\mathcal_X) \otimes \mathcal_) where * \mu_M denotes the microlocalization functor, * \mathcal_ is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lars Hörmander
Lars Valter Hörmander (24 January 1931 – 25 November 2012) was a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". Hörmander was awarded the Fields Medal in 1962 and the Wolf Prize in 1988. In 2006 he was awarded the Steele Prize for Mathematical Exposition for his four-volume textbook ''Analysis of Linear Partial Differential Operators'', which is considered a foundational work on the subject. Hörmander completed his Ph.D. in 1955 at Lund University. Hörmander then worked at Stockholm University, at Stanford University, and at the Institute for Advanced Study in Princeton, New Jersey. He returned to Lund University as a professor from 1968 until 1996, when he retired with the title of professor emeritus. Biography Education Hörmander was born in Mjällby, a village in Blekinge in southern Sweden where his father was a teacher. Like his older brothers and sisters before him, he att ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Masaki Kashiwara
is a Japanese mathematician. He was a student of Mikio Sato at the University of Tokyo. Kashiwara made leading contributions towards algebraic analysis, microlocal analysis, D-module, ''D''-module theory, Hodge theory, sheaf theory and representation theory. Kashiwara and Sato established the foundations of the theory of systems of linear partial differential equations with analytic coefficients, introducing a cohomological approach that follows the spirit of Grothendieck's theory of scheme (mathematics), schemes. Joseph Bernstein, Bernstein introduced a similar approach in the polynomial coefficients case. Kashiwara's master thesis states the foundations of D-module, ''D''-module theory. His PhD thesis proves the rationality of the roots of b-functions (Bernstein–Sato polynomials), using ''D''-module theory and resolution of singularities. He was a plenary speaker at International Congress of Mathematicians, 1978, Helsinki and an invited speaker, 1990, Kyoto. He is a member o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perverse Sheaf
The mathematical term perverse sheaves refers to a certain abelian category associated to a topological space ''X'', which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of Zoghman Mebkhout, gaining more popularity after the (independent) work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (intersection homology of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations (microlocal calculus and holonomic D-modules of Joseph Bernstein, Masaki Kashiwara and Takahiro Kawai). It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of algebraic geometry, topology, analysis and differential equations. They also play an important role in number theory, algebra, and representation theory. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Algebra
In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. Differential algebra refers also to the area of mathematics consisting in the study of these algebraic objects and their use in the algebraic study of differential equations. Differential algebra was introduced by Joseph Ritt in 1950. Open problems The biggest open problems in the field include the Kolchin Catenary Conjecture, the Ritt Problem, and The Jacobi Bound Problem. All of these deal with the structure of differential ideals in differential rings. Differential ring A ''differential ring'' is a ring R equipped with one or more ''derivations'', whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauss–Manin Connection
In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s of the family. It was introduced by for curves ''S'' and by in higher dimensions. Flat sections of the bundle are described by differential equations; the best-known of these is the Picard–Fuchs equation, which arises when the family of varieties is taken to be the family of elliptic curves. In intuitive terms, when the family is locally trivial, cohomology classes can be moved from one fiber in the family to nearby fibers, providing the 'flat section' concept in purely topological terms. The existence of the connection is to be inferred from the flat sections. Intuition Consider a smooth morphism of schemes X\to B over characteristic 0. If we consider these spaces as complex analytic spaces, then the Ehresmann fibration theorem te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vanishing Cycle
In mathematics, vanishing cycles are studied in singularity theory and other parts of algebraic geometry. They are those homology cycles of a smooth fiber in a family which vanish in the singular fiber. For example, in a map from a connected complex surface to the complex projective line, a generic fiber is a smooth Riemann surface of some fixed genus g and, generically, there will be isolated points in the target whose preimages are nodal curves. If one considers an isolated critical value and a small loop around it, in each fiber, one can find a smooth loop such that the singular fiber can be obtained by pinching that loop to a point. The loop in the smooth fibers gives an element of the first homology group of a surface, and the monodromy of the critical value is defined to be the monodromy of the first homology of the fibers as the loop is traversed, i.e. an invertible map of the first homology of a (real) surface of genus g. A classical result is the Picard–Lefschetz form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R'' wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]