The mathematical term perverse sheaves refers to a certain
abelian category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ab ...
associated to a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
''X'', which may be a real or complex
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, or a more general
topologically stratified space
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, usually singular. This concept was introduced in the thesis of
Zoghman Mebkhout
Zoghman Mebkhout (born 1949 ) (مبخوت زغمان) is a French-Algerian mathematician. He is known for his work in algebraic analysis, geometry and representation theory, more precisely on the theory of ''D''-modules.
Career
Mebkhout is c ...
, gaining more popularity after the (independent) work of
Joseph Bernstein
Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv Univ ...
,
Alexander Beilinson
Alexander A. Beilinson (born 1957) is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1 ...
, and
Pierre Deligne
Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Pr ...
(1982) as a formalisation of the
Riemann-Hilbert correspondence, which related the topology of singular spaces (
intersection homology In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them ov ...
of
Mark Goresky
Robert Mark Goresky is a Canadian mathematician who invented intersection homology with his advisor and life partner Robert MacPherson.
Career
Goresky received his Ph.D. from Brown University in 1976. His thesis, titled ''Geometric Cohomology a ...
and
Robert MacPherson) and the algebraic theory of differential equations (
microlocal calculus
Algebraic analysis is an area of mathematics that deals with systems of Partial differential equation, linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of Function (mathematic ...
and holonomic
D-module
In mathematics, a ''D''-module is a module (mathematics), module over a ring (mathematics), ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Sin ...
s of
Joseph Bernstein
Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv Univ ...
,
Masaki Kashiwara
is a Japanese mathematician. He was a student of Mikio Sato at the University of Tokyo. Kashiwara made leading contributions towards algebraic analysis, microlocal analysis, D-module, ''D''-module theory, Hodge theory, sheaf theory and represent ...
and
Takahiro Kawai). It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
,
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, analysis and
differential equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
. They also play an important role in
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777 ...
, algebra, and
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
. The properties characterizing perverse sheaves already appeared in the 75's paper of Kashiwara on the constructibility of solutions of holonomic
D-module
In mathematics, a ''D''-module is a module (mathematics), module over a ring (mathematics), ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Sin ...
s.
Preliminary remarks
The name ''perverse sheaf'' comes through rough translation of the French "faisceaux pervers". The justification is that perverse sheaves are complexes of sheaves which have several features in common with sheaves: they form an abelian category, they have
cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
, and to construct one, it suffices to construct it locally everywhere. The adjective "pervers" originates in the
intersection homology In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them ov ...
theory, and its origin was explained by .
The Beilinson–Bernstein–Deligne definition of a perverse sheaf proceeds through the machinery of
triangulated categories In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy cate ...
in
homological algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
and has a very strong algebraic flavour, although the main examples arising from Goresky–MacPherson theory are topological in nature because the simple objects in the category of perverse sheaves are the intersection cohomology complexes. This motivated MacPherson to recast the whole theory in geometric terms on a basis of
Morse theory
In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiabl ...
. For many applications in representation theory, perverse sheaves can be treated as a 'black box', a category with certain formal properties.
Definition and examples
A perverse sheaf is an object ''C'' of the bounded
derived category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proce ...
of sheaves with
constructible cohomology on a space ''X'' such that the set of points ''x'' with
:
or
has real dimension at most 2''i'', for all ''i''. Here ''j''
''x'' is the inclusion map of the point ''x''.
If ''X'' is smooth and everywhere of dimension ''d'', then
: