Diamond simulant
   HOME

TheInfoList



OR:

A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
. Simulants are distinct from
synthetic diamond Lab-grown diamond (LGD; also called laboratory-grown, laboratory-created, man-made, artisan-created, artificial, synthetic, or cultured diamond) is diamond that is produced in a controlled technological process (in contrast to naturally formed ...
s, which are actual diamonds exhibiting the same
material properties A materials property is an intensive property of a material, i.e., a physical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another c ...
as natural diamonds. Enhanced diamonds are also excluded from this definition. A diamond simulant may be artificial, natural, or in some cases a combination thereof. While their material properties depart markedly from those of diamond, simulants have certain desired characteristics—such as dispersion and
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
—which lend themselves to imitation. Trained gemologists with appropriate equipment are able to distinguish natural and synthetic diamonds from all diamond simulants, primarily by visual inspection. The most common diamond simulants are high- leaded glass (i.e.,
rhinestone A rhinestone, paste or diamante is a diamond simulant originally made from rock crystal but since the 19th century from crystal glass or polymers such as acrylic. Original Originally, rhinestones were rock crystals gathered from the river ...
s) and
cubic zirconia Cubic zirconia (CZ) is the cubic crystalline form of zirconium dioxide (ZrO2). The synthesized material is hard and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirco ...
(CZ), both artificial materials. A number of other artificial materials, such as strontium titanate and synthetic
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visib ...
have been developed since the mid-1950s, but these are no longer in common use. Introduced at the end of the 20th century, the lab-grown product
moissanite Moissanite () is naturally occurring silicon carbide and its various crystalline polymorphs. It has the chemical formula SiC and is a rare mineral, discovered by the French chemist Henri Moissan in 1893. Silicon carbide is useful for commercial ...
has gained popularity as an alternative to diamond. The high price of gem-grade
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
s, as well as significant ethical concerns of the diamond trade, have created a large demand for diamond simulants.


Desired and differential properties

In order to be considered for use as a diamond simulant, a material must possess certain diamond-like properties. The most advanced artificial simulants have properties which closely approach diamond, but all simulants have one or more features that clearly and (for those familiar with diamond) easily differentiate them from diamond. To a gemologist, the most important of differential properties are those that foster non-destructive testing; most of these are visual in nature. Non-destructive testing is preferred because most suspected diamonds are already cut into gemstones and set in
jewelry Jewellery ( UK) or jewelry ( U.S.) consists of decorative items worn for personal adornment, such as brooches, rings, necklaces, earrings, pendants, bracelets, and cufflinks. Jewellery may be attached to the body or the clothes. From a w ...
, and if a destructive test (which mostly relies on the relative fragility and softness of non-diamonds) fails, it may damage the simulant—an unacceptable outcome for most jewelry owners, as even if a stone is not a diamond, it may still be of value. Following are some of the properties by which diamond and its simulants can be compared and contrasted.


Durability and density

The Mohs scale of mineral hardness is a non-linear scale of common
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
' resistances to scratching. Diamond is at the top of this scale (hardness 10), as it is one of the hardest naturally occurring materials known. (Some artificial substances, such as aggregated diamond nanorods, are harder.) Since a diamond is unlikely to encounter substances that can scratch it, other than another diamond, diamond gemstones are typically free of scratches. Diamond's hardness also is visually evident (under the
microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisi ...
or
loupe A loupe ( ) is a simple, small magnification device used to see small details more closely. They generally have higher magnification than a magnifying glass, and are designed to be held or worn close to the eye. A loupe does not have an attached h ...
) by its highly
lustrous Lustre (British English) or luster (American English; see spelling differences) is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin ''lux'', meaning "light", and generally ...
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cut ...
s (described as ''adamantine'') which are perfectly flat, and by its crisp, sharp facet edges. For a diamond simulant to be effective, it must be very hard relative to most gems. Most simulants fall far short of diamond's hardness, so they can be separated from diamond by their external flaws and poor polish. In the recent past, the so-called "window pane test" was commonly thought to be an assured method of identifying diamond. It is a potentially destructive test wherein a suspect diamond gemstone is scraped against a pane of glass, with a positive result being a scratch on the glass and none on the gemstone. The use of
hardness point In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
s and
scratch plate A pickguard (also known more correctly as scratchplate) is a piece of plastic or other (often laminated) material that is placed on the body of a guitar, mandolin or similar plucked string instrument. The main purpose of the pickguard is to protec ...
s made of corundum (hardness 9) are also used in place of glass. Hardness tests are inadvisable for three reasons: glass is fairly soft (typically 6 or below) and can be scratched by a large number of materials (including many simulants); diamond has four directions of perfect and easy cleavage (planes of structural weakness along which the diamond could split) which could be triggered by the testing process; and many diamond-like gemstones (including older simulants) are valuable in their own right. The
specific gravity Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ...
(SG) or density of a gem diamond is fairly constant at 3.52. Most simulants are far above or slightly below this value, which can make them easy to identify if unset. High-density liquids such as
diiodomethane Diiodomethane or methylene iodide, commonly abbreviated "MI", is an organoiodine compound. Diiodomethane is a colorless liquid; however, it decomposes upon exposure to light liberating iodine, which colours samples brownish. It is slightly solub ...
can be used for this purpose, but these liquids are all highly
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
and therefore are usually avoided. A more practical method is to compare the expected size and weight of a suspect diamond to its measured parameters: for example, a cubic zirconia (SG 5.6–6) will be 1.7 times the expected weight of an equivalently sized diamond.


Optics and color

Diamonds are usually cut into brilliants to bring out their ''brilliance'' (the amount of light reflected back to the viewer) and ''fire'' (the degree to which colorful prismatic flashes are seen). Both properties are strongly affected by the cut of the stone, but they are a function of diamond's high
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
(RI—the degree to which incident light is bent upon entering the stone) of 2.417 (as measured by sodium light, 589.3 nm) and high dispersion (the degree to which white light is split into its spectral colors as it passes through the stone) of 0.044, as measured by the sodium B and G line interval. Thus, if a diamond simulant's RI and dispersion are too low, it will appear comparatively dull or "lifeless"; if the RI and dispersion are too high, the effect will be considered unreal or even tacky. Very few simulants have closely approximating RI and dispersion, and even the close simulants can be separated by an experienced observer. Direct measurements of RI and dispersion are impractical (a standard gemological
refractometer A refractometer is a laboratory or field device for the measurement of an index of refraction ( refractometry). The index of refraction is calculated from the observed refraction angle using Snell's law. For mixtures, the index of refraction the ...
has an upper limit of about RI 1.81), but several companies have devised reflectivity meters to gauge a material's RI indirectly by measuring how well it reflects an
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
beam. Perhaps equally as important is ''optic character''. Diamond and other cubic (and also amorphous) materials are '' isotropic'', meaning that light entering a stone behaves the same way regardless of direction. Conversely, most minerals are '' anisotropic'', which produces birefringence, or double refraction of light entering the material in all directions other than an
optic axis An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens, microscope or telescopic sight. The optical axis is an imaginary line that defines the path along which light propagat ...
(a direction of single refraction in a doubly refractive material). Under low magnification, this birefringence is usually detectable as a visual doubling of a cut gemstone's rear facets or internal flaws. An effective diamond simulant should therefore be isotropic. Under longwave (365 nm)
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
light, diamond may
fluoresce Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
a blue, yellow, green, mauve, or red of varying intensity. The most common fluorescence is blue, and such stones may also phosphoresce yellow—this is thought to be a unique combination among gemstones. There is usually little if any response to shortwave ultraviolet, in contrast to many diamond simulants. Similarly, because most diamond simulants are artificial, they tend to have uniform properties: in a multi-stone diamond ring, one would expect the individual diamonds to fluoresce differently (in different colors and intensities, with some likely to be inert). If all the stones fluoresce in an identical manner, they are unlikely to be diamond. Most "colorless" diamonds are actually tinted yellow or brown to some degree, whereas some artificial simulants are completely colorless—the equivalent of a perfect "D" in
diamond color A chemically pure and structurally perfect diamond is perfectly transparent with no hue, or ''color''. However, in reality almost no gem-sized natural diamonds are absolutely perfect. The color of a diamond may be affected by chemical impurities ...
terminology. This "too good to be true" factor is important to consider; colored diamond simulants meant to imitate fancy diamonds are more difficult to spot in this regard, but the simulants' colors rarely approximate. In most diamonds (even colorless ones) a characteristic absorption spectrum can be seen (by a direct-vision
spectroscope An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
), consisting of a fine line at 415 nm. The dopants used to impart color in artificial simulants may be detectable as a complex
rare-earth The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
absorption spectrum, which is never seen in diamond. Also present in most diamonds are certain internal and external flaws or ''inclusions'', the most common of which are fractures and solid foreign crystals. Artificial simulants are usually internally flawless, and any flaws that are present are characteristic of the manufacturing process. The inclusions seen in natural simulants will often be unlike those ever seen in diamond, most notably liquid "feather" inclusions. The diamond cutting process will often leave portions of the original crystal's surface intact. These are termed ''naturals'' and are usually on the girdle of the stone; they take the form of triangular, rectangular, or square pits (''etch marks'') and are seen only in diamond.


Thermal and electrical

Diamond is an extremely effective thermal conductor and usually an
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
insulator. The former property is widely exploited in the use of an electronic ''thermal probe'' to separate diamonds from their imitations. These probes consist of a pair of battery-powered thermistors mounted in a fine
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
tip. One thermistor functions as a
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
ing device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. As most simulants are thermal insulators, the thermistor's heat will not be conducted. This test takes about 2–3 seconds. The only possible exception is moissanite, which has a thermal conductivity similar to diamond: older probes can be fooled by moissanite, but newer thermal and electrical conductivity testers are sophisticated enough to differentiate the two materials. The latest development is nano diamond coating, an extremely thin layer of diamond material. If not tested properly it may show the same characteristics as a diamond. A diamond's electrical conductance is only relevant to blue or gray-blue stones, because the interstitial boron responsible for their color also makes them
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s. Thus, a suspected blue diamond can be affirmed if it completes an
electric circuit An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, ...
successfully.


Artificial simulants

Diamond has been imitated by artificial materials for hundreds of years; advances in technology have seen the development of increasingly better simulants with properties ever nearer those of diamond. Although most of these simulants were characteristic of a certain time period, their large production volumes ensured that all continue to be encountered with varying frequency in jewelry of the present. Nearly all were first conceived for intended use in
high technology High technology (high tech), also known as advanced technology (advanced tech) or exotechnology, is technology that is at the cutting edge: the highest form of technology available. It can be defined as either the most complex or the newest te ...
, such as
active laser medium The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a h ...
s,
varistor A varistor is an electronic component with an electrical resistance that varies with the applied voltage. Also known as a voltage-dependent resistor (VDR), it has a nonlinear, non- ohmic current–voltage characteristic that is similar to that ...
s, and
bubble memory Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as ''bubbles'' or ''domains'', each storing one bit of data. The material is arranged to form a series o ...
. Due to their limited present supply, collectors may pay a premium for the older types.


Summary table

The "refractive index(es)" column shows one refractive index for singly refractive substances, and a range for doubly refractive substances.


1700 onwards

The formulation of flint glass using
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
, alumina, and
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes an ...
to increase RI and dispersion began in the late Baroque period. Flint glass is fashioned into brilliants, and when freshly cut they can be surprisingly effective diamond simulants. Known as rhinestones, pastes, or strass, glass simulants are a common feature of antique jewelry; in such cases, rhinestones can be valuable historical artifacts in their own right. The great softness (below hardness 6) imparted by the lead means a rhinestone's facet edges and faces will quickly become rounded and scratched. Together with conchoidal fractures, and air bubbles or flow lines within the stone, these features make glass imitations easy to spot under only moderate magnification. In contemporary production it is more common for glass to be molded rather than cut into shape: in these stones the facets will be concave and facet edges rounded, and mold marks or seams may also be present. Glass has also been combined with other materials to produce composites.


1900–1947

The first
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
line artificial diamond simulants were synthetic white
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sa ...
( Al2O3, pure corundum) and spinel (MgO·Al2O3, pure
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
aluminium oxide). Both have been synthesized in large quantities since the first decade of the 20th century via the Verneuil or flame-fusion process, although spinel was not in wide use until the 1920s. The Verneuil process involves an inverted
oxyhydrogen Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough ...
blowpipe, with purified feed powder mixed with
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
that is carefully fed through the blowpipe. The feed powder falls through the oxy-hydrogen flame, melts, and lands on a rotating and slowly descending pedestal below. The height of the pedestal is constantly adjusted to keep its top at the optimal position below the flame, and over a number of hours the molten powder cools and crystallizes to form a single pedunculated pear or '' boule'' crystal. The process is an economical one, with crystals of up to 9 centimeters (3.5 inches) in diameter grown. Boules grown via the modern Czochralski process may weigh several kilograms. Synthetic sapphire and spinel are durable materials (hardness 9 and 8) that take a good polish; however, due to their much lower RI when compared to diamond (1.762–1.770 for sapphire, 1.727 for spinel), they are "lifeless" when cut. (Synthetic sapphire is also anisotropic, making it even easier to spot.) Their low RIs also mean a much lower dispersion (0.018 and 0.020), so even when cut into brilliants they lack the ''fire'' of diamond. Nevertheless, synthetic spinel and sapphire were popular diamond simulants from the 1920s until the late 1940s, when newer and better simulants began to appear. Both have also been combined with other materials to create composites. Commercial names once used for synthetic sapphire include ''Diamondette'', ''Diamondite'', ''Jourado Diamond, and ''Thrilliant''. Names for synthetic spinel included ''Corundolite'', ''Lustergem'', ''Magalux'', and ''Radiant''.


1947–1970

The first of the optically "improved" simulants was synthetic rutile (TiO2, pure
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
oxide). Introduced in 1947–48, synthetic rutile possesses plenty of life when cut—perhaps too much life for a diamond simulant. Synthetic rutile's RI and dispersion (2.8 and 0.33) are so much higher than diamond that the resultant brilliants look almost
opal Opal is a hydrated amorphous form of silica (SiO2·''n''H2O); its water content may range from 3 to 21% by weight, but is usually between 6 and 10%. Due to its amorphous property, it is classified as a mineraloid, unlike crystalline form ...
-like in their display of prismatic colors. Synthetic rutile is also doubly refractive: although some stones are cut with the table perpendicular to the optic axis to hide this property, merely tilting the stone will reveal the doubled back facets. The continued success of synthetic rutile was also hampered by the material's inescapable yellow tint, which producers were never able to remedy. However, synthetic rutile in a range of different colors, including blues and reds, were produced using various metal oxide dopants. These and the near-white stones were extremely popular if unreal stones. Synthetic rutile is also fairly soft (hardness ~6) and brittle, and therefore wears poorly. It is synthesized via a modification of the Verneuil process, which uses a third oxygen pipe to create a ''tricone burner''; this is necessary to produce a single crystal, due to the much higher oxygen losses involved in the oxidation of titanium. The technique was invented by Charles H. Moore, Jr. at the South Amboy,
New Jersey New Jersey is a state in the Mid-Atlantic and Northeastern regions of the United States. It is bordered on the north and east by the state of New York; on the east, southeast, and south by the Atlantic Ocean; on the west by the Delaware ...
-based National Lead Company (later
NL Industries NL Industries (), formerly known as the National Lead Company, is a lead smelting company currently based in Houston, Texas. National Lead was one of the 12 original stocks included in the Dow Jones Industrial Average at the time of its creation o ...
). National Lead and
Union Carbide Union Carbide Corporation is an American chemical corporation wholly owned subsidiary (since February 6, 2001) by Dow Chemical Company. Union Carbide produces chemicals and polymers that undergo one or more further conversions by customers befo ...
were the primary producers of synthetic rutile, and peak annual production reached 750,000 carats (150 kg). Some of the many commercial names applied to synthetic rutile include: ''Astryl'', ''Diamothyst'', ''Gava'' or ''Java Gem'', ''Meredith'', ''Miridis'', ''Rainbow Diamond'', ''Rainbow Magic Diamond'', ''Rutania'', ''Titangem'', ''Titania'', and ''Ultamite''. National Lead was also where research into the synthesis of another titanium compound—strontium titanate ( SrTiO3, pure tausonite)—was conducted. Research was done during the late 1940s and early 1950s by Leon Merker and Langtry E. Lynd, who also used a tricone modification of the Verneuil process. Upon its commercial introduction in 1955, strontium titanate quickly replaced synthetic rutile as the most popular diamond simulant. This was due not only to strontium titanate's novelty, but to its superior optics: its RI (2.41) is very close to that of diamond, while its dispersion (0.19), although also very high, was a significant improvement over synthetic rutile's psychedelic display. Dopants were also used to give synthetic titanate a variety of colors, including yellow, orange to red, blue, and black. The material is also isotropic like diamond, meaning there is no distracting doubling of facets as seen in synthetic rutile. Strontium titanate's only major drawback (if one excludes excess fire) is fragility. It is both softer (hardness 5.5) and more brittle than synthetic rutile—for this reason, strontium titanate was also combined with more durable materials to create composites. It was otherwise the best simulant around at the time, and at its peak annual production was 1.5 million carats (300 kg). Due to
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A ...
coverage, all US production was by National Lead, while large amounts were produced overseas by Nakazumi Company of Japan. Commercial names for strontium titanate included ''Brilliante'', ''Diagem'', ''Diamontina'', ''Fabulite'', and ''Marvelite''.


1970–1976

From about 1970 strontium titanate began to be replaced by a new class of diamond imitations: the "synthetic
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different s ...
s". These are not true garnets in the usual sense because they are oxides rather than silicates, but they do share natural garnet's
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns ...
(both are cubic and therefore isotropic) and the general formula A3B2C3O12. While in natural garnets C is always
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
, and A and B may be one of several common elements, most synthetic garnets are composed of uncommon rare-earth elements. They are the only diamond simulants (aside from rhinestones) with no known natural counterparts: gemologically they are best termed ''artificial'' rather than ''synthetic'', because the latter term is reserved for human-made materials that can also be found in nature. Although a number of artificial garnets were successfully grown, only two became important as diamond simulants. The first was
yttrium aluminium garnet Yttrium aluminium garnet (YAG, Y3 Al5 O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and ...
( YAG; Y3Al5O12) in the late 1960s. It was (and still is) produced by the Czochralski, or crystal-pulling, process, which involves growth from the melt. An
iridium Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
crucible A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. While crucibles were historically usually made from clay, they can be made from any material that withstands te ...
surrounded by an inert atmosphere is used, wherein
yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
oxide and
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
oxide are melted and mixed together at a carefully controlled temperature near 1980 °C. A small seed crystal is attached to a rod, which is lowered over the crucible until the crystal contacts the surface of the melted mixture. The seed crystal acts as a site of nucleation; the temperature is kept steady at a point where the surface of the mixture is just below the melting point. The rod is slowly and continuously rotated and retracted, and the pulled mixture crystallizes as it exits the crucible, forming a single crystal in the form of a cylindrical boule. The crystal's purity is extremely high, and it typically measures 5 cm (2 inches) in diameter and 20 cm (8 inches) in length, and weighs 9,000 carats (1.75 kg). YAG hardness (8.25) and lack of brittleness were great improvements over strontium titanate, and although its RI (1.83) and dispersion (0.028) were fairly low, they were enough to give brilliant-cut YAGs perceptible fire and good brilliance (although still much lower than diamond). A number of different colors were also produced with the addition of dopants, including yellow, red, and a vivid green, which was used to imitate emerald. Major producers included Shelby Gem Factory of Michigan, Litton Systems, Allied Chemical,
Raytheon Raytheon Technologies Corporation is an American multinational aerospace and defense conglomerate headquartered in Arlington, Virginia. It is one of the largest aerospace and defense manufacturers in the world by revenue and market capitali ...
, and Union Carbide; annual global production peaked at 40 million carats (8000 kg) in 1972, but fell sharply thereafter. Commercial names for YAG included ''Diamonair'', ''Diamonique'', ''Gemonair'', ''Replique'', and ''Triamond''. While market saturation was one reason for the fall in YAG production levels, another was the recent introduction of the other artificial garnet important as a diamond simulant, gadolinium gallium garnet (GGG; Gd3Ga5O12). Produced in much the same manner as YAG (but with a lower melting point of 1750 °C), GGG had an RI (1.97) close to, and a dispersion (0.045) nearly identical to diamond. GGG was also hard enough (hardness 7) and tough enough to be an effective gemstone, but its ingredients were also much more expensive than YAG's. Equally hindering was GGG's tendency to turn dark brown upon exposure to sunlight or other ultraviolet source: this was due to the fact that most GGG gems were fashioned from impure material that was rejected for technological use. The SG of GGG (7.02) is also the highest of all diamond simulants and amongst the highest of all gemstones, which makes loose GGG gems easy to spot by comparing their dimensions with their expected and actual weights. Relative to its predecessors, GGG was never produced in significant quantities; it became more or less unheard of by the close of the 1970s. Commercial names for GGG included ''Diamonique II'' and ''Galliant''.


1976 to present

Cubic zirconia Cubic zirconia (CZ) is the cubic crystalline form of zirconium dioxide (ZrO2). The synthesized material is hard and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirco ...
or CZ (ZrO2; zirconium dioxide—not to be confused with
zircon Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of t ...
, a
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
silicate) quickly dominated the diamond simulant market following its introduction in 1976, and it remains the most gemologically and economically important simulant. CZ had been synthesized since 1930 but only in
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
form: the growth of single-crystal CZ would require an approach radically different from those used for previous simulants due to zirconia's extremely high melting point (2750 °C), unsustainable by any crucible. The solution found involved a network of water-filled copper pipes and
radio-frequency induction : ''For the common use of RF induction process of heating a metal object by electromagnetic induction, see induction heating'' Radio-frequency induction or RF induction is the use of a radio frequency magnetic field to transfer energy by means of e ...
heating coils; the latter to heat the zirconia feed powder, and the former to cool the exterior and maintain a retaining "skin" under 1 millimeter thick. CZ was thus grown in a crucible of itself, a technique called ''cold crucible'' (in reference to the cooling pipes) or '' skull crucible'' (in reference to either the shape of the crucible or of the crystals grown). At standard pressure zirconium oxide would normally crystallize in the
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic s ...
rather than cubic crystal system: for cubic crystals to grow, a stabilizer must be used. This is usually Yttrium(III) oxide or
calcium oxide Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "''lime''" connotes calcium-containing inorganic ...
. The skull crucible technique was first developed in 1960s
France France (), officially the French Republic ( ), is a country primarily located in Western Europe. It also comprises of overseas regions and territories in the Americas and the Atlantic, Pacific and Indian Oceans. Its metropolitan area ...
, but was perfected in the early 1970s by Soviet scientists under V. V. Osiko at the
Lebedev Physical Institute The Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS or just LPI) (in russian: Физи́ческий институ́т имени П.Н.Ле́бедева Российской академии наук (ФИАН)), situated ...
in
Moscow Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 millio ...
. By 1980 annual global production had reached 50 million carats (10,000 kg). The hardness (8–8.5), RI (2.15–2.18, isotropic), dispersion (0.058–0.066), and low material cost make CZ the most popular simulant of diamond. Its optical and physical constants are however variable, owing to the different stabilizers used by different producers. There are many formulations of stabilized cubic zirconia. These variations change the physical and optical properties markedly. While the visual likeness of CZ is close enough to diamond to fool most who do not handle diamond regularly, CZ will usually give certain clues. For example: it is somewhat brittle and is soft enough to possess scratches after normal use in jewelry; it is usually internally flawless and completely colorless (whereas most diamonds have some internal imperfections and a yellow tint); its SG (5.6–6) is high; and its reaction under ultraviolet light is a distinctive beige. Most jewelers will use a thermal probe to test all suspected CZs, a test which relies on diamond's superlative thermal conductivity (CZ, like almost all other diamond simulants, is a thermal insulator). CZ is made in a number of different colors meant to imitate fancy diamonds (e.g., yellow to golden brown, orange, red to pink, green, and opaque black), but most of these do not approximate the real thing. Cubic zirconia can be coated with diamond-like carbon to improve its durability, but will still be detected as CZ by a thermal probe. CZ had virtually no competition until the 1998 introduction of
moissanite Moissanite () is naturally occurring silicon carbide and its various crystalline polymorphs. It has the chemical formula SiC and is a rare mineral, discovered by the French chemist Henri Moissan in 1893. Silicon carbide is useful for commercial ...
(SiC;
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal s ...
). Moissanite is superior to cubic zirconia in two ways: its hardness (8.5–9.25) and low SG (3.2). The former property results in facets that are sometimes as crisp as a diamond's, while the latter property makes simulated moissanite somewhat harder to spot when unset (although still disparate enough to detect). However, unlike diamond and cubic zirconia, moissanite is strongly birefringent. This manifests as the same "drunken vision" effect seen in synthetic rutile, although to a lesser degree. All moissanite is cut with the table perpendicular to the optic axis in order to hide this property from above, but when viewed under magnification at only a slight tilt the doubling of facets (and any inclusions) is readily apparent. The inclusions seen in moissanite are also characteristic: most will have fine, white, subparallel growth tubes or needles oriented perpendicular to the stone's table. It is conceivable that these growth tubes could be mistaken for laser drill holes that are sometimes seen in diamond (see
diamond enhancement Diamond enhancements are specific treatments, performed on natural diamonds (usually those already cut and polished into gems), which are designed to improve the visual gemological characteristics of the diamond in one or more ways. These include ...
), but the tubes will be noticeably doubled in moissanite due to its birefringence. Like synthetic rutile, current moissanite production is also plagued by an as yet inescapable tint, which is usually a brownish green. A limited range of fancy colors have been produced as well, the two most common being blue and green.


Natural simulants

Natural
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
s that (when cut) optically resemble white diamonds are rare, because the trace impurities usually present in natural minerals tend to impart color. The earliest simulants of diamond were colorless
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
(A form of
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
, which also form obsidian,
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
and
sand Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class o ...
),
rock crystal Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical form ...
(a type of quartz), topaz, and
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several ...
(
goshenite Goshenite is a colorless gem variety of beryl. It is called the mother of all gemstones because it can be transformed into other like emerald, Morganite (gem), morganite, or Red beryl, bixbite. Goshenite is also referred to as the purest form of b ...
); they are all common minerals with above-average hardness (7–8), but all have low RIs and correspondingly low dispersions. Well-formed quartz crystals are sometimes offered as "diamonds", a popular example being the so-called " Herkimer diamonds" mined in
Herkimer County, New York Herkimer County is a county in the U.S. state of New York. As of the 2020 census, the population was 60,139. Its county seat is Herkimer. The county was created in 1791 north of the Mohawk River out of part of Montgomery County. It is named ...
. Topaz's SG (3.50–3.57) also falls within the range of diamond. From a historical perspective, the most notable natural simulant of diamond is zircon. It is also fairly hard (7.5), but more importantly shows perceptible fire when cut, due to its high dispersion of 0.039. Colorless zircon has been mined in Sri Lanka for over 2,000 years; prior to the advent of modern mineralogy, colorless zircon was thought to be an inferior form of diamond. It was called "Matara diamond" after its source location. It is still encountered as a diamond simulant, but differentiation is easy due to zircon's anisotropy and strong birefringence (0.059). It is also notoriously brittle and often shows wear on the girdle and facet edges. Much less common than colorless zircon is colorless
scheelite Scheelite is a calcium tungstate mineral with the chemical formula Ca W O4. It is an important ore of tungsten (wolfram). Scheelite is originally named after Swedish chemist K. Scheele (1742-1786). Well-formed crystals are sought by collectors ...
. Its dispersion (0.026) is also high enough to mimic diamond, but although it is highly lustrous its hardness is much too low (4.5–5.5) to maintain a good polish. It is also anisotropic and fairly dense (SG 5.9–6.1). Synthetic scheelite produced via the Czochralski process is available, but it has never been widely used as a diamond simulant. Due to the scarcity of natural gem-quality scheelite, synthetic scheelite is much more likely to simulate it than diamond. A similar case is the orthorhombic
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
cerussite, which is so fragile (very brittle with four directions of good cleavage) and soft (hardness 3.5) that it is never seen set in jewelry, and only occasionally seen in gem collections because it is so difficult to cut. Cerussite gems have an adamantine luster, high RI (1.804–2.078), and high dispersion (0.051), making them attractive and valued collector's pieces. Aside from softness, they are easily distinguished by cerussite's high density (SG 6.51) and anisotropy with extreme birefringence (0.271). Due to their rarity fancy-colored diamonds are also imitated, and zircon can serve this purpose too. Applying heat treatment to brown zircon can create several bright colors: these are most commonly sky-blue, golden yellow, and red. Blue zircon is very popular, but it is not necessarily color stable; prolonged exposure to ultraviolet light (including the UV component in sunlight) tends to bleach the stone. Heat treatment also imparts greater brittleness to zircon and characteristic inclusions. Another fragile candidate mineral is sphalerite (zinc blende). Gem-quality material is usually a strong yellow to honey brown, orange, red, or green; its very high RI (2.37) and dispersion (0.156) make for an extremely lustrous and fiery gem, and it is also isotropic. But here again, its low hardness (2.5–4) and perfect dodecahedral cleavage preclude sphalerite's wide use in jewelry. Two calcium-rich members of the garnet group fare much better: these are
grossularite Grossular is a calcium-aluminium species of the garnet group of minerals. It has the chemical formula of Ca3Al2(SiO4)3 but the calcium may, in part, be replaced by ferrous iron and the aluminium by ferric iron. The name grossular is derived from t ...
(usually brownish orange, rarely colorless, yellow, green, or pink) and andradite. The latter is the rarest and most costly of the garnets, with three of its varieties— topazolite (yellow),
melanite Andradite is a mineral species of the garnet group. It is a nesosilicate, with formula Ca3Fe2Si3O12. Andradite includes three varieties: * ''Melanite'': Black in color, referred to as "titanian andradite".demantoid (green)—sometimes seen in jewelry. Demantoid (literally "diamond-like") especially has been prized as a gemstone since its discovery in the
Ural Mountains The Ural Mountains ( ; rus, Ура́льские го́ры, r=Uralskiye gory, p=ʊˈralʲskʲɪjə ˈɡorɨ; ba, Урал тауҙары) or simply the Urals, are a mountain range that runs approximately from north to south through western ...
in 1868; it is a noted feature of antique
Russia Russia (, , ), or the Russian Federation, is a transcontinental country spanning Eastern Europe and Northern Asia. It is the largest country in the world, with its internationally recognised territory covering , and encompassing one-eig ...
n and Art Nouveau jewelry. Titanite or sphene is also seen in antique jewelry; it is typically some shade of chartreuse and has a luster, RI (1.885–2.050), and dispersion (0.051) high enough to be mistaken for diamond, yet it is anisotropic (a high birefringence of 0.105–0.135) and soft (hardness 5.5). Discovered the 1960s, the rich green
tsavorite Tsavorite or tsavolite is a variety of the garnet group species grossular, a calcium-aluminium garnet with the formula Ca3 Al2 Si3 O12.Gemological Institute of America, ''GIA Gem Reference Guide'' 1995, Trace amounts of vanadium or chromium pro ...
variety of grossular is also very popular. Both grossular and andradite are isotropic and have relatively high RIs (around 1.74 and 1.89 respectively) and high dispersions (0.027 and 0.057), with demantoid's exceeding diamond. However, both have a low hardness (6.5–7.5) and invariably possess inclusions atypical for diamond—the byssolite "horsetails" seen in demantoid are one striking example. Furthermore, most are very small, typically under 0.5 carats (100 mg) in weight. Their lusters range from vitreous to subadamantine, to almost metallic in the usually opaque melanite, which has been used to simulate black diamond. Some natural spinel is also deep black and could serve this same purpose.


Composites

Because strontium titanate and glass are too soft to survive use as a ring stone, they have been used in the construction of composite or ''doublet'' diamond simulants. The two materials are used for the bottom portion (pavilion) of the stone, and in the case of strontium titanate, a much harder material—usually colorless synthetic spinel or sapphire—is used for the top half (crown). In glass doublets, the top portion is made of almandine garnet; it is usually a very thin slice which does not modify the stone's overall body color. There have even been reports of diamond-on-diamond doublets, where a creative entrepreneur has used two small pieces of rough to create one larger stone. In strontium titanate and diamond-based doublets, an epoxy is used to adhere the two halves together. The epoxy may fluoresce under UV light, and there may be residue on the stone's exterior. The garnet top of a glass doublet is physically fused to its base, but in it and the other doublet types there are usually flattened air bubbles seen at the junction of the two halves. A join line is also readily visible whose position is variable; it may be above or below the girdle, sometimes at an angle, but rarely along the girdle itself. The most recent composite simulant involves combining a CZ core with an outer coating of laboratory created amorphous diamond. The concept effectively mimics the structure of a cultured pearl (which combines a core bead with an outer layer of pearl coating), only done for the diamond market.


See also

* Diamond clarity * Diamond cut *
Fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
*
Imitation pearl Imitation pearls are man-made ''faux'' pearls. They are not to be confused with cultured pearls, which are real pearls created through artificial intervention. Materials used to create imitation pearls include glass, plastic, and mollusc shell ...


Footnotes


References

*Hall, Cally. (1994). ''Gemstones''. p. 63, 70, 121. Eyewitness Handbooks; Kyodo Printing Co., Singapore. *Nassau, Kurt. (1980). ''Gems Made by Man'', pp. 203–241.
Gemological Institute of America The Gemological Institute of America (GIA) is a nonprofit institute based in Carlsbad, California. It is dedicated to research and education in the field of gemology and the jewelry arts. Founded in 1931, GIA's mission is to protect buyers and se ...
; Santa Monica, California. *O'Donoghue, Michael, and Joyner, Louise. (2003). ''Identification of Gemstones'', pp. 12–19. Butterworth-Heinemann, Great Britain. *Pagel-Theisen, Verena. (2001). ''Diamond Grading ABC: The Manual'' (9th ed.), pp. 298–313. Rubin & Son n.v.; Antwerp, Belgium. *Schadt, H. (1996). ''Goldsmith's Art: 5000 Years of Jewelry and Hollowware'', p. 141. Arnoldsche Art Publisher; Stuttgart, New York. *Webster, Robert, and Read, Peter G. (Ed.) (2000). ''Gems: Their Sources, Descriptions and Identification'' (5th ed.), pp. 65–71. Butterworth-Heinemann, Great Britain. {{ISBN, 0-7506-1674-1 Crystals Glass art *