HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff
[::MainTopicLength::#1500] [::ListTopicLength::#1000] [::ListLength::#15] [::ListAdRepeat::#3]

picture info

Photosynthesis
Photosynthesis
Photosynthesis
is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities (energy transformation). This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek φῶς, phōs, "light", and σύνθεσις, synthesis, "putting together".[1][2][3] In most cases, oxygen is also released as a waste product. Most plants, most algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs
[...More...]

"Photosynthesis" on:
Wikipedia
Google
Yahoo

picture info

Exothermic
In thermodynamics, the term exothermic process (exo- : "outside") describes a process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e.g. a battery), or sound (e.g. explosion heard when burning hydrogen). Its etymology stems from the Greek prefix έξω (exō, which means "outwards") and the Greek word θερμικός (thermikόs, which means "thermal").[1] The term exothermic was first coined by Marcellin Berthelot
[...More...]

"Exothermic" on:
Wikipedia
Google
Yahoo

Atmospheric Oxygen
Atmospheric physics Atmospheric dynamics (category) Atmospheric chemistry (category)MeteorologyWeather (category) · (portal) Tropical cyclone (category)ClimatologyClimate (category) Climate change (category) Global warming (category) · (portal)v t eAtmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and that of other planets is studied. It is a multidisciplinary approach of research and draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology and other disciplines. Research is increasingly connected with other arenas of study such as climatology. The composition and chemistry of the Earth's atmosphere is of importance for several reasons, but primarily because of the interactions between the atmosphere and living organisms
[...More...]

"Atmospheric Oxygen" on:
Wikipedia
Google
Yahoo

Chemical Synthesis
Chemical synthesis is a purposeful execution of chemical reactions to obtain a product, or several products.[1] This happens by physical and chemical manipulations usually involving one or more reactions. In modern laboratory usage, this tends to imply that the process is reproducible, reliable, and established to work in multiple laboratories. A chemical synthesis begins by selection of compounds that are known as reagents or reactants. Various reaction types can be applied to these to synthesize the product, or an intermediate product. This requires mixing the compounds in a reaction vessel such as a chemical reactor or a simple round-bottom flask
[...More...]

"Chemical Synthesis" on:
Wikipedia
Google
Yahoo

picture info

Biomass
Biomass
Biomass
is an industry term for getting energy by burning wood, and other organic matter. Burning biomass releases carbon emissions, but has been classed as a renewable energy source in the EU and UN legal frameworks, because plant stocks can be replaced with new growth.[1] It has become popular among coal power stations, which switch from coal to biomass in order to convert to renewable energy generation without wasting existing generating plant and infrastructure. Biomass most often refers to plants or plant-based materials that are not used for food or feed, and are specifically called lignocellulosic biomass.[2] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical
[...More...]

"Biomass" on:
Wikipedia
Google
Yahoo

World Energy Resources And Consumption
World total primary energy consumption by fuel in 2015[2]   Coal (30%)   Natural Gas (24%)   Hydro (7%)   Nuclear (4%)   Oil (33%)   Others (Renewables) (2%)World energy consumption is the total energy used by the entire human civilization. Typically measured per year, it involves all energy harnessed from every energy source applied towards humanity's endeavours across every single industrial and technological sector, across every country. It does not include energy from food, and the extent to which direct biomass burning has been accounted for is poorly documented. Being the power source metric of civilization, World Energy Consumption has deep implications for humanity's socio-economic-political sphere. Institutions such as the International Energy Agency (IEA), the U.S. Energy Information Administration (EIA), and the European Environment Agency (EEA) record and publish energy data periodically
[...More...]

"World Energy Resources And Consumption" on:
Wikipedia
Google
Yahoo

Energy Transformation
Energy
Energy
transformation, also termed as energy conversion, is the process of changing energy from one of its forms into another. In physics, energy is a quantity that provides the capacity to perform many actions—think of lifting or warming an object. In addition to being convertible, energy is transferable to a different location or object, but it cannot be created or destroyed. Energy
Energy
in many of its forms may be used in natural processes, or to provide some service to society such as heating, refrigeration, lightening or performing mechanical work to operate machines
[...More...]

"Energy Transformation" on:
Wikipedia
Google
Yahoo

Terawatts
The watt (symbol: W) is a unit of power. In the International System of Units (SI) it is defined as a derived unit of 1 joule per second,[1] and is used to quantify the rate of energy transfer
[...More...]

"Terawatts" on:
Wikipedia
Google
Yahoo

picture info

Evolution Of Multicellularity
Multicellular organisms are organisms that consist of more than one cell, in contrast to unicellular organisms.[1] All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium. Multicellular organisms arise in various ways, for example by cell division or by aggregation of many single cells.[2] Colonial organisms are the result of many identical individuals joining together to form a colony
[...More...]

"Evolution Of Multicellularity" on:
Wikipedia
Google
Yahoo

picture info

Hydrogen
Hydrogen
Hydrogen
is a chemical element with symbol H and atomic number 1. With a standard atomic weight of 7000100800000000000♠1.008, hydrogen is the lightest element on the periodic table. Its monatomic form (H) is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass.[7][note 1] Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium (name rarely used, symbol 1H), has one proton and no neutrons. The universal emergence of atomic hydrogen first occurred during the recombination epoch. At standard temperature and pressure, hydrogen is a colorless, odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic gas with the molecular formula H2. Since hydrogen readily forms covalent compounds with most nonmetallic elements, most of the hydrogen on Earth exists in molecular forms such as water or organic compounds
[...More...]

"Hydrogen" on:
Wikipedia
Google
Yahoo

Reducing Agent
A reducing agent (also called a reductant or reducer) is an element (such as calcium) or compound that loses (or "donates") an electron to another chemical species in a redox chemical reaction. Since the reducing agent is losing electrons, it is said to have been oxidized. If any chemical is an electron donor (reducing agent), another must be an electron recipient (oxidizing agent). A reducing agent is oxidized because it loses electrons in the redox reaction. Thus, reducers (reducing agents) "reduce" (or, seen another way, are "oxidized" by) oxidizers (oxidizing agents), and oxidizers "oxidize" (that is, are "reduced" by) reducers. In their pre-reaction states, reducers have more electrons (that is, they are by themselves reduced) and oxidizers have fewer electrons (that is, they are by themselves oxidized). A reducing agent typically is in one of its lower possible oxidation states and is known as the electron donor
[...More...]

"Reducing Agent" on:
Wikipedia
Google
Yahoo

picture info

Greek Language
Greek (Modern Greek: ελληνικά [eliniˈka], elliniká, "Greek", ελληνική γλώσσα [eliniˈci ˈɣlosa] ( listen), ellinikí glóssa, "Greek language") is an independent branch of the Indo-European family of languages, native to Greece
Greece
and other parts of the Eastern Mediterranean
[...More...]

"Greek Language" on:
Wikipedia
Google
Yahoo

Reverse Krebs Cycle
The reverse Krebs cycle (also known as the reverse tricarboxylic acid cycle, the reverse TCA cycle, or the reverse citric acid cycle) is a sequence of chemical reactions that are used by some bacteria to produce carbon compounds from carbon dioxide and water. The reaction is the citric acid cycle run in reverse: Where the Krebs cycle takes complex carbon molecules in the form of sugars and oxidizes them to CO2 and water, the reverse cycle takes CO2 and water to make carbon compounds. This process is used by some bacteria to synthesise carbon compounds, sometimes using hydrogen, sulfide, or thiosulfate as electron donors.[1][2] In this process, it can be seen as an alternative to the fixation of inorganic carbon in the reductive pentose phosphate cycle which occurs in a wide variety of microbes and higher organisms. The reaction is a possible candidate for prebiotic early-earth conditions and, so, is of interest in the research of the origin of life
[...More...]

"Reverse Krebs Cycle" on:
Wikipedia
Google
Yahoo

picture info

Vegetation
Vegetation
Vegetation
is an assemblage of plant species and the ground cover they provide.[2] It is a general term, without specific reference to particular taxa, life forms, structure, spatial extent, or any other specific botanical or geographic characteristics. It is broader than the term flora which refers to species composition. Perhaps the closest synonym is plant community, but vegetation can, and often does, refer to a wider range of spatial scales than that term does, including scales as large as the global
[...More...]

"Vegetation" on:
Wikipedia
Google
Yahoo

picture info

Electron
The electron is a subatomic particle, symbol e− or β−, whose electric charge is negative one elementary charge.[8] Electrons belong to the first generation of the lepton particle family,[9] and are generally thought to be elementary particles because they have no known components or substructure.[1] The electron has a mass that is approximately 1/1836 that of the proton.[10] Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. As it is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle.[9] Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light
[...More...]

"Electron" on:
Wikipedia
Google
Yahoo

picture info

Plasma Membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates the interior of all cells from the outside environment (the extracellular space).[1][2] It consists of a lipid bilayer with embedded proteins. The basic function of the cell membrane is to protect the cell from its surroundings. The cell membrane controls the movement of substances in and out of cells and organelles. In this way, it is selectively permeable to ions and organic molecules.[3] In addition, cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity and cell signalling and serve as the attachment surface for several extracellular structures, including the cell wall, the carbohydrate layer called the glycocalyx, and the intracellular network of protein fibers called the cytoskeleton
[...More...]

"Plasma Membrane" on:
Wikipedia
Google
Yahoo
.