thermometer
   HOME

TheInfoList



OR:

A thermometer is a device that measures temperature or a
temperature gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degree ...
(the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer or the pyrometric sensor in an infrared thermometer) in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value (e.g. the visible scale that is marked on a mercury-in-glass thermometer or the digital readout on an infrared model). Thermometers are widely used in technology and industry to monitor processes, in
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
, in medicine, and in scientific research.


History

While an individual thermometer is able to measure degrees of hotness, the readings on two thermometers cannot be compared unless they conform to an agreed scale. Today there is an absolute thermodynamic temperature scale. Internationally agreed temperature scales are designed to approximate this closely, based on fixed points and interpolating thermometers. The most recent official temperature scale is the International Temperature Scale of 1990. It extends from to approximately .


Early developments

Various authors have credited the invention of the thermometer to Hero of Alexandria. The thermometer was not a single invention, however, but a development. Hero of Alexandria (10–70 AD) knew of the principle that certain substances, notably air, expand and contract and described a demonstration in which a closed tube partially filled with air had its end in a container of water. The expansion and contraction of the air caused the position of the water/air interface to move along the tube. Such a mechanism was later used to show the hotness and coldness of the air with a tube in which the water level is controlled by the expansion and contraction of the gas. These devices were developed by several European scientists in the 16th and 17th centuries, notably
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He w ...
R.S. Doak (2005) Galileo: astronomer and physicist p36 and
Santorio Santorio Santorio Santori (29 March, 1561 – 25 February, 1636) also called Santorio Santorio, Santorio de' Sanctoriis, or Sanctorius of Padua and various combinations of these names, was an Italian physiologist, physician, and professor, who introd ...
. As a result, devices were shown to produce this effect reliably, and the term ''thermoscope'' was adopted because it reflected the changes in sensible heat (the modern concept of temperature was yet to arise). The difference between a thermoscope and a thermometer is that the latter has a scale. Though Galileo is often said to be the inventor of the thermometer, there is no surviving document that he actually produced any such instrument. The first clear diagram of a thermoscope was published in 1617 by Giuseppe Biancani (1566 – 1624); the first showing a scale and thus constituting a thermometer was by
Santorio Santorio Santorio Santori (29 March, 1561 – 25 February, 1636) also called Santorio Santorio, Santorio de' Sanctoriis, or Sanctorius of Padua and various combinations of these names, was an Italian physiologist, physician, and professor, who introd ...
in 1625. This was a vertical tube, closed by a bulb of air at the top, with the lower end opening into a vessel of water. The water level in the tube is controlled by the expansion and contraction of the air, so it is what we would now call an air thermometer. The word thermometer (in its French form) first appeared in 1624 in ''La Récréation Mathématique'' by Jean Leurechon, who describes one with a scale of 8 degrees.R.P. Benedict (1984) Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd ed, page 4 The word comes from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
words θερμός, ''thermos'', meaning "hot" and μέτρον, ''metron'', meaning "measure". The above instruments suffered from the disadvantage that they were also
barometer A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
s, i.e. sensitive to air pressure. In 1629, Joseph Solomon Delmedigo, a student of Galileo and Santorio in Padua, published what is apparently the first description and illustration of a sealed liquid-in-glass thermometer. It is described as having a bulb at the bottom of a sealed tube partially filled with brandy. The tube had a numbered scale. Delmedigo did not claim to have invented this instrument. Nor did he name anyone else as its inventor. In about 1654,
Ferdinando II de' Medici, Grand Duke of Tuscany Ferdinando II de' Medici (14 July 1610 – 23 May 1670) was grand duke of Tuscany from 1621 to 1670. He was the eldest son of Cosimo II de' Medici and Maria Maddalena of Austria. He was remembered by his contemporaries as a man of culture ...
(1610–1670) did produce such an instrument, the first modern-style thermometer, dependent on the expansion of a liquid and independent of air pressure. Many other scientists experimented with various liquids and designs of thermometer. However, each inventor and each thermometer was unique — there was no standard scale. Early attempts at standardization added a single reference point such as the freezing point of water. The use of two references for graduating the thermometer is said to have been introduced by Joachim Dalence in 1668 although
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists ...
(1629–1695) in 1665 had already suggested the use of graduations based on the
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and boiling points of water as standards and, in 1694, Carlo Renaldini (1615–1698) proposed using them as fixed points along a universal scale. In 1701,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
(1642–1726/27) proposed a scale of 12 degrees between the melting point of ice and
body temperature Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperatur ...
.


Era of precision thermometry

In 1714, scientist and inventor Daniel Gabriel Fahrenheit invented a reliable thermometer, using mercury instead of alcohol and water mixtures. In 1724, he proposed a temperature scale which now (slightly adjusted) bears his name. In 1742, Anders Celsius (1701–1744) proposed a scale with zero at the boiling point and 100 degrees at the freezing point of water, though the scale which now bears his name has them the other way around. French entomologist René Antoine Ferchault de Réaumur invented an alcohol thermometer and, temperature scale in 1730, that ultimately proved to be less reliable than Fahrenheit's mercury thermometer. The first physician to use thermometer measurements in clinical practice was Herman Boerhaave (1668–1738). In 1866, Sir Thomas Clifford Allbutt (1836–1925) invented a clinical thermometer that produced a body temperature reading in five minutes as opposed to twenty.Sir Thomas Clifford Allbutt
''
Encyclopædia Britannica The ( Latin for "British Encyclopædia") is a general knowledge English-language encyclopaedia. It is published by Encyclopædia Britannica, Inc.; the company has existed since the 18th century, although it has changed ownership various ...
''
In 1999, Dr.
Francesco Pompei Francesco "Frank" Pompei is the founder and chief executive officer of Exergen Corporation. Pompei earned BS and MS mechanical engineering degrees from the Massachusetts Institute of Technology.“Virtual Classroom ensures cost savings, waste reduc ...
of the
Exergen Corporation Exergen Corporation is a designer and manufacturer of infrared scanners, thermometers, and sensors headquartered in Watertown, Massachusetts. Exergen's products are used in application in medical, automotive, food processing, agriculture and tex ...
introduced the world's first temporal artery thermometer, a non-invasive temperature
sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
which scans the forehead in about two seconds and provides a medically accurate body temperature.


Registering

Traditional thermometers were all non-registering thermometers. That is, the thermometer did not hold the temperature reading after it was moved to a place with a different temperature. Determining the temperature of a pot of hot liquid required the user to leave the thermometer in the hot liquid until after reading it. If the non-registering thermometer was removed from the hot liquid, then the temperature indicated on the thermometer would immediately begin changing to reflect the temperature of its new conditions (in this case, the air temperature). Registering thermometers are designed to hold the temperature indefinitely, so that the thermometer can be removed and read at a later time or in a more convenient place. Mechanical registering thermometers hold either the highest or lowest temperature recorded until manually re-set, e.g., by shaking down a mercury-in-glass thermometer, or until an even more extreme temperature is experienced. Electronic registering thermometers may be designed to remember the highest or lowest temperature, or to remember whatever temperature was present at a specified point in time. Thermometers increasingly use electronic means to provide a digital display or input to a computer.


Physical principles of thermometry

Thermometers may be described as empirical or absolute. Absolute thermometers are calibrated numerically by the thermodynamic absolute temperature scale. Empirical thermometers are not in general necessarily in exact agreement with absolute thermometers as to their numerical scale readings, but to qualify as thermometers at all they must agree with absolute thermometers and with each other in the following way: given any two bodies isolated in their separate respective thermodynamic equilibrium states, all thermometers agree as to which of the two has the higher temperature, or that the two have equal temperatures. For any two empirical thermometers, this does not require that the relation between their numerical scale readings be linear, but it does require that relation to be strictly monotonic. This is a fundamental character of temperature and thermometers.Truesdell, C.A. (1980). ''The Tragicomical History of Thermodynamics, 1822-1854'', Springer, New York, . As it is customarily stated in textbooks, taken alone, the so-called " zeroth law of thermodynamics" fails to deliver this information, but the statement of the zeroth law of thermodynamics by James Serrin in 1977, though rather mathematically abstract, is more informative for thermometry: "Zeroth Law – There exists a topological line M which serves as a coordinate manifold of material behaviour. The points L of the manifold M are called 'hotness levels', and M is called the 'universal hotness manifold'." To this information there needs to be added a sense of greater hotness; this sense can be had, independently of calorimetry, of
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
, and of properties of particular materials, from Wien's displacement law of thermal radiation: the temperature of a bath of thermal radiation is
proportional Proportionality, proportion or proportional may refer to: Mathematics * Proportionality (mathematics), the property of two variables being in a multiplicative relation to a constant * Ratio, of one quantity to another, especially of a part compare ...
, by a universal constant, to the frequency of the maximum of its frequency spectrum; this frequency is always positive, but can have values that tend to zero. Another way of identifying hotter as opposed to colder conditions is supplied by Planck's principle, that when a process of isochoric adiabatic work is the sole means of change of internal energy of a closed system, the final state of the system is never colder than the initial state; except for phase changes with latent heat, it is hotter than the initial state. There are several principles on which empirical thermometers are built, as listed in the section of this article entitled "Primary and secondary thermometers". Several such principles are essentially based on the constitutive relation between the state of a suitably selected particular material and its temperature. Only some materials are suitable for this purpose, and they may be considered as "thermometric materials". Radiometric thermometry, in contrast, can be only slightly dependent on the constitutive relations of materials. In a sense then, radiometric thermometry might be thought of as "universal". This is because it rests mainly on a universality character of thermodynamic equilibrium, that it has the universal property of producing blackbody radiation.


Thermometric materials

There are various kinds of empirical thermometer based on material properties. Many empirical thermometers rely on the constitutive relation between pressure, volume and temperature of their thermometric material. For example, mercury expands when heated. If it is used for its relation between pressure and volume and temperature, a thermometric material must have three properties: (1) Its heating and cooling must be rapid. That is to say, when a quantity of heat enters or leaves a body of the material, the material must expand or contract to its final volume or reach its final pressure and must reach its final temperature with practically no delay; some of the heat that enters can be considered to change the volume of the body at constant temperature, and is called the latent heat of expansion at constant temperature; and the rest of it can be considered to change the temperature of the body at constant volume, and is called the specific heat at constant volume. Some materials do not have this property, and take some time to distribute the heat between temperature and volume change.Truesdell, C., Bharatha, S. (1977). ''The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Rigorously Constructed upon the Foundation Laid by S. Carnot and F. Reech'', Springer, New York, , page 20. (2) Its heating and cooling must be reversible. That is to say, the material must be able to be heated and cooled indefinitely often by the same increment and decrement of heat, and still return to its original pressure, volume and temperature every time. Some plastics do not have this property;Ziegler, H., (1983). ''An Introduction to Thermomechanics'', North-Holland, Amsterdam, . (3) Its heating and cooling must be monotonic. That is to say, throughout the range of temperatures for which it is intended to work, :(a) at a given fixed pressure, ::either (i) the volume increases when the temperature increases, or else (ii) the volume decreases when the temperature increases; ::but not (i) for some temperatures and (ii) for others; or :(b) at a given fixed volume, ::either (i) the pressure increases when the temperature increases, or else (ii) the pressure decreases when the temperature increases; ::but not (i) for some temperatures and (ii) for others. At temperatures around about 4 °C, water does not have the property (3), and is said to behave anomalously in this respect; thus water cannot be used as a material for this kind of thermometry for temperature ranges near 4 °C.Truesdell, C., Bharatha, S. (1977). ''The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Rigorously Constructed upon the Foundation Laid by S. Carnot and F. Reech'', Springer, New York, , pages 9-10, 15-18, 36-37. Gases, on the other hand, all have the properties (1), (2), and (3)(a)(α) and (3)(b)(α). Consequently, they are suitable thermometric materials, and that is why they were important in the development of thermometry.


Constant volume thermometry

According to Preston (1894/1904), Regnault found constant pressure air thermometers unsatisfactory, because they needed troublesome corrections. He therefore built a constant volume air thermometer. Constant volume thermometers do not provide a way to avoid the problem of anomalous behaviour like that of water at approximately 4 °C.


Radiometric thermometry

Planck's law very accurately quantitatively describes the power spectral density of electromagnetic radiation, inside a rigid walled cavity in a body made of material that is completely opaque and poorly reflective, when it has reached thermodynamic equilibrium, as a function of absolute thermodynamic temperature alone. A small enough hole in the wall of the cavity emits near enough blackbody radiation of which the spectral radiance can be precisely measured. The walls of the cavity, provided they are completely opaque and poorly reflective, can be of any material indifferently. This provides a well-reproducible absolute thermometer over a very wide range of temperatures, able to measure the absolute temperature of a body inside the cavity.


Primary and secondary thermometers

A thermometer is called primary or secondary based on how the raw physical quantity it measures is mapped to a temperature. As summarized by Kauppinen et al., "For primary thermometers the measured property of matter is known so well that temperature can be calculated without any unknown quantities. Examples of these are thermometers based on the equation of state of a gas, on the
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
of sound in a gas, on the thermal noise voltage or current of an electrical resistor, and on the angular anisotropy of gamma ray emission of certain radioactive nuclei in a magnetic field." In contrast, "Secondary thermometers are most widely used because of their convenience. Also, they are often much more sensitive than primary ones. For secondary thermometers knowledge of the measured property is not sufficient to allow direct calculation of temperature. They have to be calibrated against a primary thermometer at least at one temperature or at a number of fixed temperatures. Such fixed points, for example, triple points and superconducting transitions, occur reproducibly at the same temperature."


Calibration

Thermometers can be calibrated either by comparing them with other calibrated thermometers or by checking them against known fixed points on the temperature scale. The best known of these fixed points are the melting and boiling points of pure water. (Note that the boiling point of water varies with pressure, so this must be controlled.) The traditional way of putting a scale on a liquid-in-glass or liquid-in-metal thermometer was in three stages: #Immerse the sensing portion in a stirred mixture of pure ice and water at atmospheric pressure and mark the point indicated when it had come to thermal equilibrium. #Immerse the sensing portion in a steam bath at Standard atmospheric pressure and again mark the point indicated. #Divide the distance between these marks into equal portions according to the temperature scale being used. Other fixed points used in the past are the body temperature (of a healthy adult male) which was originally used by Fahrenheit as his upper fixed point ( to be a number divisible by 12) and the lowest temperature given by a mixture of salt and ice, which was originally the definition of .R.P. Benedict (1984) ''Fundamentals of Temperature, Pressure, and Flow Measurements'', 3rd ed, , page 5 (This is an example of a
Frigorific mixture A frigorific mixture is a mixture of two or more phases in a chemical system that, so long as none of the phases are completely consumed during equilibration, reaches an equilibrium temperature that is independent of the starting temperature of t ...
.) As body temperature varies, the Fahrenheit scale was later changed to use an upper fixed point of boiling water at . These have now been replaced by the defining points in the International Temperature Scale of 1990, though in practice the melting point of water is more commonly used than its triple point, the latter being more difficult to manage and thus restricted to critical standard measurement. Nowadays manufacturers will often use a
thermostat A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint. Thermostats are used in any device or system tha ...
bath or solid block where the temperature is held constant relative to a calibrated thermometer. Other thermometers to be calibrated are put into the same bath or block and allowed to come to equilibrium, then the scale marked, or any deviation from the instrument scale recorded.R.P. Benedict (1984) ''Fundamentals of Temperature, Pressure, and Flow Measurements'', 3rd ed, , chapter 11 "Calibration of Temperature Sensors" For many modern devices calibration will be stating some value to be used in processing an electronic signal to convert it to a temperature.


Precision, accuracy, and reproducibility

The precision or resolution of a thermometer is simply to what fraction of a degree it is possible to make a reading. For high temperature work it may only be possible to measure to the nearest 10 °C or more. Clinical thermometers and many electronic thermometers are usually readable to 0.1 °C. Special instruments can give readings to one thousandth of a degree. However, this precision does not mean the reading is true or accurate, it only means that very small changes can be observed. A thermometer calibrated to a known fixed point is accurate (i.e. gives a true reading) at that point. The invention of the technology to measure temperature led to the creation of Scales of Temperature. In between fixed calibration points, interpolation is used, usually linear. This may give significant differences between different types of thermometer at points far away from the fixed points. For example, the expansion of mercury in a glass thermometer is slightly different from the change in resistance of a platinum resistance thermometer, so these two will disagree slightly at around 50 °C.T. Duncan (1973) Advanced Physics: Materials and Mechanics (John Murray, London) There may be other causes due to imperfections in the instrument, e.g. in a liquid-in-glass thermometer if the capillary tube varies in diameter. For many purposes reproducibility is important. That is, does the same thermometer give the same reading for the same temperature (or do replacement or multiple thermometers give the same reading)? Reproducible temperature measurement means that comparisons are valid in scientific experiments and industrial processes are consistent. Thus if the same type of thermometer is calibrated in the same way its readings will be valid even if it is slightly inaccurate compared to the absolute scale. An example of a reference thermometer used to check others to industrial standards would be a platinum resistance thermometer with a digital display to 0.1 °C (its precision) which has been calibrated at 5 points against national standards (−18, 0, 40, 70, 100 °C) and which is certified to an accuracy of ±0.2 °C.Peak Sensors
Reference Thermometer
According to British Standards, correctly calibrated, used and maintained liquid-in-glass thermometers can achieve a measurement uncertainty of ±0.01 °C in the range 0 to 100 °C, and a larger uncertainty outside this range: ±0.05 °C up to 200 or down to −40 °C, ±0.2 °C up to 450 or down to −80 °C.BS1041-2.1:1985 Temperature Measurement- Part 2: Expansion thermometers. Section 2.1 Guide to selection and use of liquid-in-glass thermometers


Indirect methods of temperature measurement

;Thermal expansion : Utilizing the property of thermal expansion of various phases of matter. : Pairs of solid metals with different expansion coefficients can be used for bi-metal mechanical thermometers. Another design using this principle is
Breguet's thermometer Breguet's thermometer, also called a spiral thermometer, is a type of thermometer which uses the expansion of metal under heat to produce a measurement more sensitive, and with a higher range, than both mercury Mercury commonly refers to: * Mercu ...
. : Some liquids possess relatively high expansion coefficients over a useful temperature ranges thus forming the basis for an alcohol or mercury thermometer. Alternative designs using this principle are the
reversing thermometer Unlike most conventional mercury thermometers, a reversing thermometer is able to record a given temperature to be viewed at a later time. If the thermometer is flipped upside down, the current temperature will be shown until it is turned upright ...
and Beckmann differential thermometer. : As with liquids, gases can also be used to form a gas thermometer. ;Pressure :
Vapour pressure thermometer A vapour pressure thermometer is a thermometer that uses a pressure gauge to measure the vapour pressure of a liquid. References

Thermometers {{thermodynamics-stub ...
;Density :
Galileo thermometer A Galileo thermometer (or Galilean thermometer) is a thermometer made of a sealed glass cylinder containing a clear liquid and several glass vessels of varying density. The individual floats rise or fall in proportion to their respective densit ...
;Thermochromism : Some compounds exhibit thermochromism at distinct temperature changes. Thus by tuning the phase transition temperatures for a series of substances the temperature can be quantified in discrete increments, a form of digitization. This is the basis for a
liquid crystal thermometer A liquid crystal thermometer, temperature strip or plastic strip thermometer is a type of thermometer that contains heat-sensitive (thermochromic) liquid crystals in a plastic strip that change colour to indicate different temperatures. Liquid cry ...
. : ;Band edge thermometry (BET) : Band edge thermometry (BET) takes advantage of the temperature-dependence of the band gap of semiconductor materials to provide very precise optical (''i.e.'' non-contact) temperature measurements. BET systems require a specialized optical system, as well as custom data analysis software. ; : All objects above absolute zero emit blackbody radiation for which the spectra is directly proportional to the temperature. This property is the basis for a pyrometer or infrared thermometer and
thermography Infrared thermography (IRT), thermal video and/or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared ...
. It has the advantage of remote temperature sensing; it does not require contact or even close proximity unlike most thermometers. At higher temperatures, blackbody radiation becomes visible and is described by the colour temperature. For example a glowing heating element or an approximation of a star's surface temperature. ;Fluorescence : Phosphor thermometry ;Optical absorbance spectra :
Fiber optical thermometer Fiber-optical thermometers can be used in electromagnetically strongly influenced environment, in microwave fields, power plants or explosion-proof areas and wherever measurement with electrical temperature sensors are not possible. Structure O ...
;Electrical resistance : Resistance thermometer which use materials such as
Balco alloy Balco is a nickel- iron alloy with a thermal conductivity similar to nickel but twice the resistivity. It is used for making low cost resistance temperature sensors. It consists of 70% nickel and 30% iron. Balco is Carpenter Technology Corpor ...
: Thermistor : Coulomb blockade thermometer ;Electrical potential : Thermocouples are useful over a wide temperature ranges from cryogenic temperatures to over 1000°C, but typically have an error of ±0.5-1.5°C. : Silicon bandgap temperature sensors are commonly found packaged in integrated circuits with accompanying ADC and interface such as I2C. Typically they are specified to work within about —50 to 150°C with accuracies in the ±0.25 to 1°C range but can be improved by binning. ;Electrical resonance :
Quartz thermometer The quartz thermometer is a high-precision, high accuracy temperature sensor. It measures temperature by measuring the frequency of a quartz crystal oscillator. The oscillator contains a specially cut crystal that results in a linear temperature c ...
;Nuclear magnetic resonance : Chemical shift is temperature dependent. This property is used to calibrate the thermostat of NMR probes, usually using methanol or ethylene glycol. This can potentially be problematic for internal standards which are usually assumed to have a defined chemical shift (e.g 0 ppm for TMS) but in fact exhibit a temperature dependence. ;Magnetic susceptibility : : Above the
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cu ...
, the magnetic susceptibility of a paramagnetic material exhibits an inverse temperature dependence. This phenomenon is the basis of a magnetic
cryometer A cryometer is a thermometer used to measure very low temperatures of objects. Ethanol-filled thermometers are used in preference to mercury for meteorological measurements of minimum temperatures and can be used down to −70 °C (-94 °F). The p ...
.


Applications

Thermometers utilize a range of physical effects to measure temperature. Temperature sensors are used in a wide variety of scientific and engineering applications, especially measurement systems. Temperature systems are primarily either electrical or mechanical, occasionally inseparable from the system which they control (as in the case of a mercury-in-glass thermometer). Thermometers are used in roadways in cold weather climates to help determine if icing conditions exist. Indoors, thermistors are used in climate control systems such as air conditioners, freezers, heaters, refrigerators, and water heaters. Galileo thermometers are used to measure indoor air temperature, due to their limited measurement range. Such
liquid crystal thermometer A liquid crystal thermometer, temperature strip or plastic strip thermometer is a type of thermometer that contains heat-sensitive (thermochromic) liquid crystals in a plastic strip that change colour to indicate different temperatures. Liquid cry ...
s (which use thermochromic liquid crystals) are also used in
mood ring A mood ring is a finger ring that contains a thermochromic element, or "mood stone", that changes colors based on the temperature of the finger of the wearer. Finger temperature, as long as the ambient temperature is relatively constant, is ...
s and used to measure the temperature of water in fish tanks. Fiber Bragg grating temperature sensors are used in nuclear power facilities to monitor reactor core temperatures and avoid the possibility of nuclear meltdowns.


Nanothermometry

Nanothermometry Nanothermometry is a branch of physics and engineering exploring the use of non-invasive precise thermometers working at the nanoscale. These devices have high spatial resolution (below one micrometer Micrometer can mean: * Micrometer (device), use ...
is an emergent research field dealing with the knowledge of temperature in the sub-micrometric scale. Conventional thermometers cannot measure the temperature of an object which is smaller than a micrometre, and new methods and materials have to be used. Nanothermometry is used in such cases. Nanothermometers are classified as luminescent thermometers (if they use light to measure temperature) and non-luminescent thermometers (systems where thermometric properties are not directly related to luminescence).


Cryometer

Thermometers used specifically for low temperatures.


Medical

* Ear thermometers tend to be an infrared thermometer. * Forehead thermometer is an example of a
liquid crystal thermometer A liquid crystal thermometer, temperature strip or plastic strip thermometer is a type of thermometer that contains heat-sensitive (thermochromic) liquid crystals in a plastic strip that change colour to indicate different temperatures. Liquid cry ...
. * Rectal and oral thermometers have typically been mercury but have since largely been superseded by
NTC thermistor A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of ''thermal'' and ''resistor''. Thermistors are divided based on their conduction ...
s with a digital readout. Various thermometric techniques have been used throughout history such as the
Galileo thermometer A Galileo thermometer (or Galilean thermometer) is a thermometer made of a sealed glass cylinder containing a clear liquid and several glass vessels of varying density. The individual floats rise or fall in proportion to their respective densit ...
to thermal imaging. Medical thermometers such as mercury-in-glass thermometers, infrared thermometers,
pill thermometer A pill thermometer is an ingestible thermometer that allows a person's core temperature Normal human body-temperature (normothermia, euthermia) is the typical temperature range found in humans. The normal human body temperature range is typica ...
s, and
liquid crystal thermometer A liquid crystal thermometer, temperature strip or plastic strip thermometer is a type of thermometer that contains heat-sensitive (thermochromic) liquid crystals in a plastic strip that change colour to indicate different temperatures. Liquid cry ...
s are used in health care settings to determine if individuals have a fever or are
hypothermic Hypothermia is defined as a body core temperature below in humans. Symptoms depend on the temperature. In mild hypothermia, there is shivering and mental confusion. In moderate hypothermia, shivering stops and confusion increases. In severe ...
.


Food and food safety

Thermometers are important in food safety, where food at temperatures within can be prone to potentially harmful levels of bacterial growth after several hours which could lead to foodborne illness. This includes monitoring refrigeration temperatures and maintaining temperatures in foods being served under heat lamps or hot water baths. Cooking thermometers are important for determining if a food is properly cooked. In particular
meat thermometer A meat thermometer with a dial. Notice the markings for each type of meat A meat thermometer or cooking thermometer is a thermometer used to measure the internal temperature of meat, especially roasts and steaks, and other cooked foods. The de ...
s are used to aid in cooking meat to a safe internal temperature while preventing over cooking. They are commonly found using either a Bimetallic strip, bimetallic coil, or a thermocouple or thermistor with a digital readout. Candy thermometers are used to aid in achieving a specific water content in a sugar solution based on its boiling temperature.


Environmental

*Indoor-outdoor thermometer *Heat meter uses a thermometer to measure rate of heat flow. *Thermostats have used bimetallic strips but digital thermistors have since become popular. Alcohol thermometers, infrared thermometers, mercury-in-glass thermometers, recording thermometers, thermistors, and Six's thermometers are used in
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
and climatology in various levels of the atmosphere and oceans. Aircraft use thermometers and hygrometers to determine if atmospheric icing conditions exist along their Airway (aviation), flight path. These measurements are used to initialize Weather forecasting, weather forecast models. Thermometers are used in roadways in cold weather climates to help determine if icing conditions exist and indoors in climate control systems.


See also

* Automated airport weather station * Thermodynamic instruments * Maximum-minimum thermometer * Wet-and-dry bulb thermometer * Mercury-in-glass thermometer * Infrared thermometer * Medical thermometer * Resistance thermometer


References


Further reading

* Middleton, W.E.K. (1966). ''A history of the thermometer and its use in meteorology''. Baltimore: Johns Hopkins Press. Reprinted ed. 2002, .
History of the Thermometer


- Recent review on Thermometry at the Nanoscale


External links


History of Temperature and Thermometry


The Thermometer—From The Feeling To The Instrument
History Channel – Invention
– Notable Modern Inventions and Discoveries

– Thermometers – Early History, Anders Celsius, Gabriel Fahrenheit and Thomson Kelvin.

– Mercury and Alcohol.
The NIST Industrial Thermometer Calibration Laboratory

Thermometry at the Nanoscale
Review {{Authority control Thermometers, Temperature Meteorological instrumentation and equipment