Mathematics Of Coloring And The Colorful Life Of Its Creators
   HOME

TheInfoList



OR:

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to
prove Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of the theory under consideration. Mathematics is essential in the
natural science Natural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatab ...
s, engineering, medicine,
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
, computer science and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent from any scientific experimentation. Some areas of mathematics, such as
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
and
game theory Game theory is the study of mathematical models of strategic interactions among rational agents. Myerson, Roger B. (1991). ''Game Theory: Analysis of Conflict,'' Harvard University Press, p.&nbs1 Chapter-preview links, ppvii–xi It has appli ...
, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, ...
), but often later find practical applications. The problem of
integer factorization In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are suf ...
, for example, which goes back to Euclid in 300 BC, had no practical application before its use in the
RSA cryptosystem RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly ...
, now widely used for the security of computer networks. Historically, the concept of a proof and its associated
mathematical rigour Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as m ...
first appeared in
Greek mathematics Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
, most notably in Euclid's ''
Elements Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of ...
''. Since its beginning, mathematics was essentially divided into geometry and
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
(the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra and
infinitesimal calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
were introduced as new areas. Since then, the interaction between mathematical innovations and
scientific discoveries Discovery is the act of detecting something new, or something previously unrecognized as meaningful. With reference to sciences and academic disciplines, discovery is the observation of new phenomena, new actions, or new events and providing ...
has led to a rapid lockstep increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the
axiomatic method In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains ...
, which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary
Mathematics Subject Classification The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme collaboratively produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. ...
lists more than 60 first-level areas of mathematics.


Etymology

The word ''mathematics'' comes from Ancient Greek ''máthēma'' ('), meaning 'that which is learnt', 'what one gets to know', hence also 'study' and 'science'. The word came to have the narrower and more technical meaning of 'mathematical study' even in Classical times. Its adjective is ''mathēmatikós'' (), meaning 'related to learning' or 'studious', which likewise further came to mean 'mathematical'. In particular, ''mathēmatikḗ tékhnē'' (; la, ars mathematica) meant 'the mathematical art'. Similarly, one of the two main schools of thought in Pythagoreanism was known as the ''mathēmatikoi'' (μαθηματικοί)which at the time meant 'learners' rather than 'mathematicians' in the modern sense. The Pythagoreans were likely the first to constrain the use of the word to just the study of
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established. In Latin, and in English until around 1700, the term ''mathematics'' more commonly meant ' astrology' (or sometimes ' astronomy') rather than 'mathematics'; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine's warning that Christians should beware of ''mathematici'', meaning 'astrologers', is sometimes mistranslated as a condemnation of mathematicians. The apparent plural form in English goes back to the Latin neuter plural ( Cicero), based on the Greek plural ''ta mathēmatiká'' () and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective ''mathematic(al)'' and formed the noun ''mathematics'' anew, after the pattern of '' physics'' and '' metaphysics'', inherited from Greek. In English, the noun ''mathematics'' takes a singular verb. It is often shortened to ''maths'' or, in North America, ''math''."maths, ''n.''"
an
"math, ''n.3''"
. ''Oxford English Dictionary,'' on-line version (2012).


Areas of mathematics

Before the Renaissance, mathematics was divided into two main areas: arithmeticregarding the manipulation of numbers, and geometry, regarding the study of shapes. Some types of pseudoscience, such as
numerology Numerology (also known as arithmancy) is the belief in an occult, divine or mystical relationship between a number and one or more coinciding events. It is also the study of the numerical value, via an alphanumeric system, of the letters in ...
and astrology, were not then clearly distinguished from mathematics. During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of the study and the manipulation of
formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
s. Calculus, consisting of the two subfields ''
differential calculus In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. ...
'' and '' integral calculus'', is the study of continuous functions, which model the typically nonlinear relationships between varying quantities, as represented by variables. This division into four main areasarithmetic, geometry, algebra, calculusendured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics. The subject of
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
has been studied for much of recorded history, yet did not become a separate branch of mathematics until the seventeenth century. At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the
axiomatic method In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains ...
led to an explosion of new areas of mathematics. The 2020
Mathematics Subject Classification The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme collaboratively produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. ...
contains no less than first-level areas. Some of these areas correspond to the older division, as is true regarding number theory (the modern name for
higher arithmetic Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777 ...
) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and
foundations Foundation may refer to: * Foundation (nonprofit), a type of charitable organization ** Foundation (United States law), a type of charitable organization in the U.S. ** Private foundation, a charitable organization that, while serving a good cause ...
.


Number theory

Number theory began with the manipulation of numbers, that is, natural numbers (\mathbb), and later expanded to integers (\Z) and rational numbers (\Q). Number theory was once called arithmetic, but nowadays this term is mostly used for numerical calculations. Number theory dates back to ancient
Babylon ''Bābili(m)'' * sux, 𒆍𒀭𒊏𒆠 * arc, 𐡁𐡁𐡋 ''Bāḇel'' * syc, ܒܒܠ ''Bāḇel'' * grc-gre, Βαβυλών ''Babylṓn'' * he, בָּבֶל ''Bāvel'' * peo, 𐎲𐎠𐎲𐎡𐎽𐎢 ''Bābiru'' * elx, 𒀸𒁀𒉿𒇷 ''Babi ...
and probably
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
. Two prominent early number theorists were Euclid of ancient Greece and
Diophantus Diophantus of Alexandria ( grc, Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the aut ...
of Alexandria. The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss. Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is Fermat's Last Theorem. This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles, who used tools including scheme theory from
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
,
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, and
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
. Another example is
Goldbach's conjecture Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold ...
, which asserts that every even integer greater than 2 is the sum of two prime numbers. Stated in 1742 by
Christian Goldbach Christian Goldbach (; ; 18 March 1690 – 20 November 1764) was a German mathematician connected with some important research mainly in number theory; he also studied law and took an interest in and a role in the Russian court. After traveling ...
, it remains unproven despite considerable effort. Number theory includes several subareas, including
analytic number theory In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Diric ...
,
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, geometry of numbers (method oriented),
diophantine equation In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a c ...
s, and
transcendence theory Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways. Transcendence ...
(problem oriented).


Geometry

Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as
lines Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
, angles and circles, which were developed mainly for the needs of
surveying Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. A land surveying professional is ca ...
and architecture, but has since blossomed out into many other subfields. A fundamental innovation was the ancient Greeks' introduction of the concept of
proofs Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a co ...
, which require that every assertion must be ''proved''. For example, it is not sufficient to verify by
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results ( theorems) and a few basic statements. The basic statements are not subject to proof because they are self-evident ( postulates), or are part of the definition of the subject of study (
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book ''
Elements Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of ...
''. The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines,
planes Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
and circles in the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
( plane geometry) and the three-dimensional Euclidean space. Euclidean geometry was developed without change of methods or scope until the 17th century, when René Descartes introduced what is now called
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
. This constituted a major change of paradigm: Instead of defining real numbers as lengths of
line segments In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
(see number line), it allowed the representation of points using their ''coordinates'', which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineerin ...
, which uses coordinates systemically. Analytic geometry allows the study of
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
s unrelated to circles and lines. Such curves can be defined as the graph of functions, the study of which led to
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
. They can also be defined as implicit equations, often polynomial equations (which spawned
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions. In the 19th century, mathematicians discovered non-Euclidean geometries, which do not follow the parallel postulate. By questioning that postulate's truth, this discovery has been viewed as joining
Russel's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains a ...
in revealing the foundational crisis of mathematics. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem. In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space. Today's subareas of geometry include: * Projective geometry, introduced in the 16th century by Girard Desargues, extends Euclidean geometry by adding points at infinity at which parallel lines intersect. This simplifies many aspects of classical geometry by unifying the treatments for intersecting and parallel lines. * Affine geometry, the study of properties relative to parallelism and independent from the concept of length. *
Differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, the study of curves, surfaces, and their generalizations, which are defined using differentiable functions. *
Manifold theory In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ne ...
, the study of shapes that are not necessarily embedded in a larger space. * Riemannian geometry, the study of distance properties in curved spaces. *
Algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, the study of curves, surfaces, and their generalizations, which are defined using polynomials. * Topology, the study of properties that are kept under
continuous deformation In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
s. ** Algebraic topology, the use in topology of algebraic methods, mainly
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
. * Discrete geometry, the study of finite configurations in geometry. * Convex geometry, the study of convex sets, which takes its importance from its applications in optimization. * Complex geometry, the geometry obtained by replacing real numbers with complex numbers.


Algebra

Algebra is the art of manipulating
equation In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
s and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were the two main precursors of algebra. Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution. Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side. The term ''algebra'' is derived from the Arabic word ''al-jabr'' meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise. Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers. Variables allow mathematicians to describe the operations that have to be done on the numbers represented using
mathematical formulas In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the terminology, term ''formula'' in science refers to the Commensurability (philosophy o ...
. Until the 19th century, algebra consisted mainly of the study of
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficien ...
s (presently '' linear algebra''), and polynomial equations in a single unknown, which were called ''algebraic equations'' (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices, modular integers, and geometric transformations), on which generalizations of arithmetic operations are often valid. The concept of
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
addresses this, consisting of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called ''modern algebra'' or abstract algebra, as established by the influence and works of Emmy Noether. (The latter term appears mainly in an educational context, in opposition to elementary algebra, which is concerned with the older way of manipulating formulas.) Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include: * group theory; * field theory; * vector spaces, whose study is essentially the same as linear algebra; * ring theory; * commutative algebra, which is the study of
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
s, includes the study of polynomials, and is a foundational part of
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
; *
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
; *
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
and
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
theory; * Boolean algebra, which is widely used for the study of the logical structure of
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
s. The study of types of algebraic structures as mathematical objects is the purpose of universal algebra and
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
. The latter applies to every
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
(not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces; this particular area of application is called algebraic topology.


Calculus and analysis

Calculus, formerly called infinitesimal calculus, was introduced independently and simultaneously by 17th-century mathematicians
Newton Newton most commonly refers to: * Isaac Newton (1642–1726/1727), English scientist * Newton (unit), SI unit of force named after Isaac Newton Newton may also refer to: Arts and entertainment * ''Newton'' (film), a 2017 Indian film * Newton ( ...
and Leibniz. It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by
Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
with the introduction of the concept of a function and many other results. Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts. Analysis is further subdivided into real analysis, where variables represent real numbers, and
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, where variables represent complex numbers. Analysis includes many subareas shared by other areas of mathematics which include: * Multivariable calculus * Functional analysis, where variables represent varying functions; *
Integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
,
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
and potential theory, all strongly related with probability theory on a
continuum Continuum may refer to: * Continuum (measurement), theories or models that explain gradual transitions from one condition to another without abrupt changes Mathematics * Continuum (set theory), the real line or the corresponding cardinal number ...
; * Ordinary differential equations; *
Partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
s; * Numerical analysis, mainly devoted to the computation on computers of solutions of ordinary and partial differential equations that arise in many applications.


Discrete mathematics

Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example is the set of all integers. Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply. Algorithmsespecially their implementation and
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) ...
play a major role in discrete mathematics. The
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
and optimal sphere packing were two major problems of discrete mathematics solved in the second half of the 20th century. The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. Discrete mathematics includes: *
Combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
, the art of enumerating mathematical objects that satisfy some given constraints. Originally, these objects were elements or
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of a given
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
; this has been extended to various objects, which establishes a strong link between combinatorics and other parts of discrete mathematics. For example, discrete geometry includes counting configurations of
geometric shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
s * Graph theory and hypergraphs * Coding theory, including error correcting codes and a part of cryptography * Matroid theory * Discrete geometry * Discrete probability distributions *
Game theory Game theory is the study of mathematical models of strategic interactions among rational agents. Myerson, Roger B. (1991). ''Game Theory: Analysis of Conflict,'' Harvard University Press, p.&nbs1 Chapter-preview links, ppvii–xi It has appli ...
(although
continuous game A continuous game is a mathematical concept, used in game theory, that generalizes the idea of an ordinary game like tic-tac-toe (noughts and crosses) or checkers (draughts). In other words, it extends the notion of a discrete game, where the playe ...
s are also studied, most common games, such as chess and
poker Poker is a family of comparing card games in which players wager over which hand is best according to that specific game's rules. It is played worldwide, however in some places the rules may vary. While the earliest known form of the game w ...
are discrete) * Discrete optimization, including combinatorial optimization, integer programming, constraint programming


Mathematical logic and set theory

The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century. Before this period, sets were not considered to be mathematical objects, and logic, although used for mathematical proofs, belonged to
philosophy Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Some ...
and was not specifically studied by mathematicians. Before Cantor's study of infinite sets, mathematicians were reluctant to consider actually infinite collections, and considered
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
to be the result of endless enumeration. Cantor's work offended many mathematicians not only by considering actually infinite sets but by showing that this implies different sizes of infinity, per Cantor's diagonal argument. This led to the controversy over Cantor's set theory. In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring
mathematical rigour Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as m ...
. Examples of such intuitive definitions are "a set is a collection of objects", "natural number is what is used for counting", "a point is a shape with a zero length in every direction", "a curve is a trace left by a moving point", etc. This became the foundational crisis of mathematics. It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory. Roughly speaking, each mathematical object is defined by the set of all similar objects and the properties that these objects must have. For example, in
Peano arithmetic In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly u ...
, the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning. This mathematical abstraction from reality is embodied in the modern philosophy of formalism, as founded by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
around 1910. The "nature" of the objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinionsometimes called "intuition"to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example,
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ...
assert, roughly speaking that, in every consistent formal system that contains the natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system. This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by
Brouwer Brouwer (also Brouwers and de Brouwer) is a Dutch and Flemish surname. The word ''brouwer'' means 'beer brewer'. Brouwer * Adriaen Brouwer (1605–1638), Flemish painter * Alexander Brouwer (b. 1989), Dutch beach volleyball player * Andries Bro ...
, who promoted intuitionistic logic, which explicitly lacks the law of excluded middle. These problems and debates led to a wide expansion of mathematical logic, with subareas such as
model theory In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the s ...
(modeling some logical theories inside other theories),
proof theory Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
, type theory,
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
and computational complexity theory. Although these aspects of mathematical logic were introduced before the rise of
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
s, their use in compiler design, program certification,
proof assistant In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor ...
s and other aspects of computer science, contributed in turn to the expansion of these logical theories.


Statistics and other decision sciences

The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory. Statisticians generate data with random sampling or randomized
experiments An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when ...
. The design of a statistical sample or experiment determines the analytical methods that will be used. Analysis of data from observational studies is done using
statistical model A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repres ...
s and the theory of
inference Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in ...
, using model selection and estimation. The models and consequential predictions should then be tested against new data. Statistical theory studies
decision problems In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whethe ...
such as minimizing the risk (
expected loss Expected loss is the sum of the values of all possible losses, each multiplied by the probability of that loss occurring. In bank lending (homes, autos, credit cards, commercial lending, etc.) the expected loss on a loan varies over time for a num ...
) of a statistical action, such as using a
procedure Procedure may refer to: * Medical procedure * Instructions or recipes, a set of commands that show how to achieve some result, such as to prepare or make something * Procedure (business), specifying parts of a business process * Standard operat ...
in, for example,
parameter estimation Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value ...
, hypothesis testing, and selecting the best. In these traditional areas of mathematical statistics, a statistical-decision problem is formulated by minimizing an objective function, like expected loss or cost, under specific constraints. For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence. Because of its use of optimization, the mathematical theory of statistics overlaps with other decision sciences, such as operations research, control theory, and
mathematical economics Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics. Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference an ...
.


Computational mathematics

Computational mathematics is the study of
mathematical problem A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more ...
s that are typically too large for human, numerical capacity. Numerical analysis studies methods for problems in analysis using functional analysis and
approximation theory In mathematics, approximation theory is concerned with how function (mathematics), functions can best be approximation, approximated with simpler functions, and with quantitative property, quantitatively characterization (mathematics), characteri ...
; numerical analysis broadly includes the study of
approximation An approximation is anything that is intentionally similar but not exactly equality (mathematics), equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very ...
and
discretization In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical ...
with special focus on rounding errors. Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic-
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
-and- graph theory. Other areas of computational mathematics include
computer algebra In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions ...
and
symbolic computation In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions ...
.


History


Ancient

The history of mathematics is an ever-growing series of abstractions. Evolutionarily speaking, the first abstraction to ever be discovered, one shared by many animals, was probably that of numbers: the realization that, for example, a collection of two apples and a collection of two oranges (say) have something in common, namely that there are of them. As evidenced by tallies found on bone, in addition to recognizing how to count physical objects,
prehistoric Prehistory, also known as pre-literary history, is the period of human history between the use of the first stone tools by hominins 3.3 million years ago and the beginning of recorded history with the invention of writing systems. The use of ...
peoples may have also known how to count abstract quantities, like timedays, seasons, or years. Evidence for more complex mathematics does not appear until around 3000 , when the
Babylonia Babylonia (; Akkadian: , ''māt Akkadī'') was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Syria). It emerged as an Amorite-ruled state c. ...
ns and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy. The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC. Many early texts mention Pythagorean triples and so, by inference, the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
,
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
, and division) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time. In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as the Pythagoreans appeared to have considered it a subject in its own right. Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof. His book, ''
Elements Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of ...
'', is widely considered the most successful and influential textbook of all time. The greatest mathematician of antiquity is often held to be
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
(c. 287–212 BC) of
Syracuse Syracuse may refer to: Places Italy *Syracuse, Sicily, or spelled as ''Siracusa'' *Province of Syracuse United States *Syracuse, New York **East Syracuse, New York **North Syracuse, New York *Syracuse, Indiana * Syracuse, Kansas *Syracuse, Miss ...
. He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus. Other notable achievements of Greek mathematics are
conic sections In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special ...
(
Apollonius of Perga Apollonius of Perga ( grc-gre, Ἀπολλώνιος ὁ Περγαῖος, Apollṓnios ho Pergaîos; la, Apollonius Pergaeus; ) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contribution ...
, 3rd century BC), trigonometry (
Hipparchus of Nicaea Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
, 2nd century BC), and the beginnings of algebra (Diophantus, 3rd century AD). The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via
Islamic mathematics Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built on Greek mathematics (Euclid, Archimedes, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important progress was made, such as full ...
. Other notable developments of Indian mathematics include the modern definition and approximation of
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
and cosine, and an early form of infinite series.


Medieval and later

During the
Golden Age of Islam The Islamic Golden Age was a period of cultural, economic, and scientific flourishing in the history of Islam, traditionally dated from the 8th century to the 14th century. This period is traditionally understood to have begun during the reign ...
, especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra. Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarismi, Omar Khayyam and
Sharaf al-Dīn al-Ṭūsī Sharaf al-Dīn al-Muẓaffar ibn Muḥammad ibn al-Muẓaffar al-Ṭūsī ( fa, شرف‌الدین مظفر بن محمد بن مظفر توسی; 1135 – 1213) was an Iranian peoples, Iranian Islamic mathematics, mathematician and Islamic as ...
. The Greek and Arabic mathematical texts were in turn translated to Latin during the Middle Ages and made available in Europe. During the early modern period, mathematics began to develop at an accelerating pace in Western Europe, with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1642–1726/27) and Gottfried Leibniz (1646–1716) in the 17th century. Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and the proof of numerous theorems. Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss, who made numerous contributions to fields such as algebra, analysis,
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, matrix theory, number theory, and
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
. In the early 20th century,
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
transformed mathematics by publishing his incompleteness theorems, which show in part that any consistent axiomatic systemif powerful enough to describe arithmeticwill contain true propositions that cannot be proved. Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January 2006 issue of the '' Bulletin of the American Mathematical Society'', "The number of papers and books included in the ''
Mathematical Reviews ''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also pu ...
'' database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."


Symbolic notation and terminology

Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of
symbols A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
used for representing
operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Ma ...
s, unspecified numbers,
relation Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public ...
s and any other mathematical objects, and then assembling them into expressions and formulas. More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include
subscript A subscript or superscript is a character (such as a number or letter) that is set slightly below or above the normal line of type, respectively. It is usually smaller than the rest of the text. Subscripts appear at or below the baseline, whil ...
s. Operation and relations are generally represented by specific
symbols A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
or
glyph A glyph () is any kind of purposeful mark. In typography, a glyph is "the specific shape, design, or representation of a character". It is a particular graphical representation, in a particular typeface, of an element of written language. A g ...
s, such as (
plus Plus may refer to: Mathematics * Addition * +, the mathematical sign Music * ''+'' (Ed Sheeran album), (pronounced "plus"), 2011 * ''Plus'' (Cannonball Adderley Quintet album), 1961 * ''Plus'' (Matt Nathanson EP), 2003 * ''Plus'' (Martin Ga ...
), (
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
), \int ( integral), (
equal Equal(s) may refer to: Mathematics * Equality (mathematics). * Equals sign (=), a mathematical symbol used to indicate equality. Arts and entertainment * ''Equals'' (film), a 2015 American science fiction film * ''Equals'' (game), a board game ...
), and (
less than In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different n ...
). All these symbols are generally grouped according to specific rules to form expressions and formulas. Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of noun phrases and formulas play the role of
clause In language, a clause is a constituent that comprises a semantic predicand (expressed or not) and a semantic predicate. A typical clause consists of a subject and a syntactic predicate, the latter typically a verb phrase composed of a verb with ...
s. Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 19 ...
. Through a series of rigorous arguments employing
deductive reasoning Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be fals ...
, a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a
lemma Lemma may refer to: Language and linguistics * Lemma (morphology), the canonical, dictionary or citation form of a word * Lemma (psycholinguistics), a mental abstraction of a word about to be uttered Science and mathematics * Lemma (botany), a ...
. A proven instance that forms part of a more general finding is termed a
corallary In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
. Numerous technical terms used in mathematics are neologisms, such as '' polynomial'' and '' homeomorphism''. Other technical terms are words of the common language that are used in an accurate meaning that may differs slightly from their common meaning. For example, in mathematics, " or" means "one, the other or both", while, in common language, it is either amiguous or means "one or the other but not both" (in mathematics, the latter is called " exclusive or"). Finally, many mathematical terms are common words that are used with a completely different meaning. This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in t ...
is
flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), ...
" and "a field is always a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
".


Relationship with sciences

Mathematics is used in most sciences for modeling phenomena, which then allows predictions to be made from experimental laws. The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model. Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used. For example, the
perihelion precession of Mercury Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bendin ...
could only be explained after the emergence of
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's general relativity, which replaced
Newton's law of gravitation Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
as a better mathematical model. There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation. In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation). However, some authors emphasize that mathematics differs from the modern notion of science by not on empirical evidence.


Pure and applied mathematics

Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of technology and science, and there was no clear distinction between pure and applied mathematics. For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, Isaac Newton introduced infinitesimal calculus for explaining the movement of the planets with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians. However, a notable exception occurred with the tradition of
pure mathematics in Ancient Greece Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, ...
. In the 19th century, mathematicians such as Karl Weierstrass and
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
increasingly focused their research on internal problems, that is, ''pure mathematics''. This led to split mathematics into ''pure mathematics'' and ''applied mathematics'', the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred. The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere. Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory". An example of the first case is the theory of distributions, introduced by
Laurent Schwartz Laurent-Moïse Schwartz (; 5 March 1915 – 4 July 2002) was a French mathematician. He pioneered the theory of distributions, which gives a well-defined meaning to objects such as the Dirac delta function. He was awarded the Fields Medal in 19 ...
for validating computations done in quantum mechanics, which became immediately an important tool of (pure) mathematical analysis. An example of the second case is the
decidability of the first-order theory of the real numbers In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressi ...
, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high. For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry. In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas. The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics". However, these terms are still used in names of some university departments, such as at the
Faculty of Mathematics In contemporary education, mathematics education, known in Europe as the didactics or pedagogy of mathematics – is the practice of teaching, learning and carrying out scholarly research into the transfer of mathematical knowledge. Although re ...
at the University of Cambridge.


Unreasonable effectiveness

The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner. It is the fact that many mathematical theories, even the "purest" have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced. Examples of unexpected applications of mathematical theories can be found in many areas of mathematics. A notable example is the
prime factorization In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are suf ...
of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the
RSA cryptosystem RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly ...
. A second historical example is the theory of
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s. They were studied by the ancient Greek mathematicians as conic sections (that is, intersections of cones with planes). It is almost 2,000 years later that
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
discovered that the
trajectories A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete traj ...
of the planets are ellipses. In the 19th century, the internal development of geometry (pure mathematics) lead to define and study non-Euclidean geometries, spaces of dimension higher than three and
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the theory of relativity that uses fundamentally these concepts. In particular, spacetime of the special relativity is a non-Euclidean space of dimension four, and spacetime of the general relativity is a (curved) manifold of dimension four. A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
and the baryon \Omega^. In both cases, the equations of the theories had unexplained solutions, which led to conjecture the existence of a unknown particle, and to search these particles. In both cases, these particles were discovered a few years later by specific experiments.


Philosophy


Reality

The connection between mathematics and material reality has led to philosophical debates since at least the time of Pythagoras. The ancient philosopher Plato argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as Platonism. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.
Armand Borel Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in alg ...
summarized this view of mathematics reality as follows, and provided quotations of
G. H. Hardy Godfrey Harold Hardy (7 February 1877 – 1 December 1947) was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of pop ...
, Charles Hermite,
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
and Albert Einstein that support his views. Nevertheless, Platonism and the concurrent views on abstraction do not explain the unreasonable effectiveness of mathematics.


Proposed definitions

There is no general consensus about a definition of mathematics or its epistemological statusthat is, its place among other human activities. A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". This makes sense, as there is a strong consensus among them about what is mathematics and what is not. Most proposed definitions try to define mathematics by its object of study. Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart. In the 19th century, when mathematicians began to address topicssuch as infinite setswhich have no clear-cut relation to physical reality, a variety of new definitions were given. With the large number of new areas of mathematics that appeared since the beginning of the 20th century and continue to appear, defining mathematics by this object of study becomes an impossible task. Another approach for defining mathematics is to use its methods. So, an area of study can be qualified as mathematics as soon as one can prove theoremassertions whose validity relies on a proof, that is, a purely-logical deduction. Others take the perspective that mathematics is an investigation of axiomatic set theory, as this study is now a foundational discipline for much of modern mathematics.


Rigor

Mathematical reasoning requires rigor. This means that the definitions must be absolutely unambiguous and the
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
s must be reducible to a succession of applications of inference rules, without any use of empirical evidence and intuition. Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics'
concision Concision (also called brevity, laconicism, or conciseness) is a writing principle of eliminating redundancy.UNT Writing Lab. "Concision, Clarity, and Cohesion." Accessed June 19, 2012Link./ref> For example, this: * "It is a fact that most argum ...
, rigorous proofs can require hundreds of pages to express. The emergence of computer-assisted proofs has allowed proof lengths to further expand, such as the 255-page
Feit–Thompson theorem In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by . History conjectured that every nonabelian finite simple group has even order. suggested using th ...
. The result of this trend is a philosophy of the quasi-empiricist proof that can not be considered infallible, but has a probability attached to it. The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation. In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs. At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and Weierstrass function) and contradictions (Russel's paradox). This was solved by the inclusion of axioms with the apodictic inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks. It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a
pleonasm Pleonasm (; , ) is redundancy in linguistic expression, such as "black darkness" or "burning fire". It is a manifestation of tautology by traditional rhetorical criteria and might be considered a fault of style. Pleonasm may also be used for em ...
. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable. Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.


Training and practice


Education

Mathematics has a remarkable ability to cross cultural boundaries and time periods. As a human activity, the practice of mathematics has a social side, which includes education, careers,
recognition Recognition may refer to: *Award, something given in recognition of an achievement Machine learning *Pattern recognition, a branch of machine learning which encompasses the meanings below Biometric * Recognition of human individuals, or biomet ...
,
popularization In sociology, popularity is how much a person, idea, place, item or other concept is either liked or accorded status by other people. Liking can be due to reciprocal liking, interpersonal attraction, and similar factors. Social status can be d ...
, and so on. In education, mathematics is a core part of the curriculum and forms an important element of the
STEM Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
academic disciplines. Prominent careers for professional mathematicians include math teacher or professor,
statistician A statistician is a person who works with theoretical or applied statistics. The profession exists in both the private and public sectors. It is common to combine statistical knowledge with expertise in other subjects, and statisticians may wor ...
,
actuary An actuary is a business professional who deals with the measurement and management of risk and uncertainty. The name of the corresponding field is actuarial science. These risks can affect both sides of the balance sheet and require asset man ...
, financial analyst, economist,
accountant An accountant is a practitioner of accounting or accountancy. Accountants who have demonstrated competency through their professional associations' certification exams are certified to use titles such as Chartered Accountant, Chartered Certifi ...
,
commodity trader A trader is a person, firm, or entity in finance who buys and sells financial instruments, such as forex, cryptocurrencies, stocks, bonds, commodities, derivatives, and mutual funds in the capacity of agent, hedger, arbitrageur, or speculator. ...
, or computer consultant. Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia. Comparable evidence has been unearthed for scribal mathematics training in the ancient Near East and then for the
Greco-Roman world The Greco-Roman civilization (; also Greco-Roman culture; spelled Graeco-Roman in the Commonwealth), as understood by modern scholars and writers, includes the geographical regions and countries that culturally—and so historically—were di ...
starting around 300 BCE. The oldest known mathematics textbook is the Rhind papyrus, dated from circa 1650 BCE in Eygpt. Due to a scarcity of books, mathematical teachings in ancient India were communicated using memorized oral tradition since the Vedic period (). In
Imperial China The earliest known written records of the history of China date from as early as 1250 BC, from the Shang dynasty (c. 1600–1046 BC), during the reign of king Wu Ding. Ancient historical texts such as the '' Book of Documents'' (early chapte ...
during the Tang dynasty (618–907 CE), a mathematics curriculum was adopted for the
civil service exam Civil service examinations are examinations implemented in various countries for recruitment and admission to the civil service. They are intended as a method to achieve an effective, rational public administration on a merit system for recruitin ...
to join the state bureaucracy. Following the
Dark Age The ''Dark Ages'' is a term for the Early Middle Ages, or occasionally the entire Middle Ages, in Western Europe after the fall of the Western Roman Empire that characterises it as marked by economic, intellectual and cultural decline. The conce ...
s, mathematics education in Europe was provided by religious schools as part of the Quadrivium. Formal instruction in pedagogy began with
Jesuit , image = Ihs-logo.svg , image_size = 175px , caption = ChristogramOfficial seal of the Jesuits , abbreviation = SJ , nickname = Jesuits , formation = , founders ...
schools in the 16th and 17th century. Most mathematical curriculum remained at a basic and practical level until the nineteenth century, when it began to flourish in France and Germany. The oldest journal addressing instruction in mathematics was '' L'Enseignement Mathématique'', which began publication in 1899. The Western advancements in science and technology led to the establishment of centralized education systems in many nation-states, with mathematics as a core componentinitially for its military applications. While the content of courses varies, in the present day nearly all countries teach mathematics to students for significant amounts of time. During school, mathematical capabilities and positive expectations have a strong association with career interest in the field. Extrinsic factors such as feedback motivation by teachers, parents, and peer groups can influence the level of interest in mathematics. Some students studying math may develop an apprehension or fear about their performance in the subject. This is known as math anxiety or math phobia, and is considered the most prominent of the disorders impacting academic performance. Math anxiety can develop due to various factors such as parental and teacher attitudes, social stereotypes, and personal traits. Help to counteract the anxiety can come from changes in instructional approaches, by interactions with parents and teachers, and by tailored treatments for the individual.


Psychology (aesthetic, creativity and intuition)

The validity of a mathematical theorem relies only on the rigor of its proof, which could theoretically be done automatically by a computer program. This does not mean that there is no place for creativity in a mathematical work. On the contrary, many important mathematical results (theorems) are solutions of problems that other mathematicians failed to solve, and the invention of a way for solving them may be a fundamental way of the solving process. An extreme example is Apery's theorem:
Roger Apery Roger is a given name, usually masculine, and a surname. The given name is derived from the Old French personal names ' and '. These names are of Germanic languages, Germanic origin, derived from the elements ', ''χrōþi'' ("fame", "renown", " ...
provided only the ideas for a proof, and the formal proof was given only several months later by three other mathematicians. Creativity and rigor are not the only psychological aspects of the activity of mathematicians. Some mathematicians can see their activity as a game, more specifically as solving
puzzle A puzzle is a game, Problem solving, problem, or toy that tests a person's ingenuity or knowledge. In a puzzle, the solver is expected to put pieces together (Disentanglement puzzle, or take them apart) in a logical way, in order to arrive at th ...
s. This aspect of mathematical activity is emphasized in recreational mathematics. Mathematicians can find an
aesthetic Aesthetics, or esthetics, is a branch of philosophy that deals with the nature of beauty and taste, as well as the philosophy of art (its own area of philosophy that comes out of aesthetics). It examines aesthetic values, often expressed th ...
value to mathematics. Like beauty, it is hard to define, it is commonly related to ''elegance'', which involves qualities like simplicity,
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
, completeness, and generality. G. H. Hardy in ''
A Mathematician's Apology ''A Mathematician's Apology'' is a 1940 essay by British mathematician G. H. Hardy, which offers a defence of the pursuit of mathematics. Central to Hardy's " apology" — in the sense of a formal justification or defence (as in Plato's '' Ap ...
'' expressed the belief that the aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He also identified other criteria such as significance, unexpectedness, and inevitability, which contribute to mathematical aesthetic.
Paul Erdős Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in ...
expressed this sentiment more ironically by speaking of "The Book", a supposed divine collection of the most beautiful proofs. The 1998 book ''
Proofs from THE BOOK ''Proofs from THE BOOK'' is a book of mathematical proofs by Martin Aigner and Günter M. Ziegler. The book is dedicated to the mathematician Paul Erdős, who often referred to "The Book" in which God keeps the most elegant proof of each mathema ...
'', inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in th ...
for
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
. Some feel that to consider mathematics a science is to downplay its artistry and history in the seven traditional liberal arts. One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematical results are ''created'' (as in art) or ''discovered'' (as in science). The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions. In the 20th century, the mathematician L. E. J. Brouwer even initiated a philosophical perspective known as
intuitionism In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fu ...
, which primarily identifies mathematics with certain creative processes in the mind. Intuitionism is in turn one flavor of a stance known as constructivism, which only considers a mathematical object valid if it can be directly constructed, not merely guaranteed by logic indirectly. This leads committed constructivists to reject certain results, particularly arguments like
existential proof In mathematics, a constructive proof is a method of mathematical proof, proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also ...
s based on the law of excluded middle. In the end, neither constructivism nor intuitionism displaced
classical mathematics In the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive m ...
or achieved mainstream acceptance. However, these programs have motivated specific developments, such as intuitionistic logic and other foundational insights, which are appreciated in their own right.


Awards and prize problems

The most prestigious award in mathematics is the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
, established in 1936 and awarded every four years (except around World War II) to up to four individuals. It is considered the mathematical equivalent of the Nobel Prize. Other prestigious mathematics awards include: * The
Abel Prize The Abel Prize ( ; no, Abelprisen ) is awarded annually by the King of Norway to one or more outstanding mathematicians. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) and directly modeled after the Nobel Prizes. ...
, instituted in 2002 and first awarded in 2003 * The Chern Medal for lifetime achievement, introduced in 2009 and first awarded in 2010 * The
AMS AMS or Ams may refer to: Organizations Companies * Alenia Marconi Systems * American Management Systems * AMS (Advanced Music Systems) * ams AG, semiconductor manufacturer * AMS Pictures * Auxiliary Medical Services Educational institutions * A ...
Leroy P. Steele Prize, awarded since 1970 * The
Wolf Prize in Mathematics The Wolf Prize in Mathematics is awarded almost annually by the Wolf Foundation in Israel. It is one of the six Wolf Prizes established by the Foundation and awarded since 1978; the others are in Agriculture, Chemistry, Medicine, Physics and Arts. ...
, also for lifetime achievement, instituted in 1978 A famous list of 23
open problem In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is know ...
s, called "
Hilbert's problems Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the pro ...
", was compiled in 1900 by German mathematician David Hilbert. This list has achieved great celebrity among mathematicians, and, , at least thirteen of the problems (depending how some are interpreted) have been solved. A new list of seven important problems, titled the "
Millennium Prize Problems The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem. According t ...
", was published in 2000. Only one of them, the
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
, duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward. To date, only one of these problems, the Poincaré conjecture, has been solved.


See also

*
List of mathematical jargon The language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in l ...
* Lists of mathematicians * Lists of mathematics topics *
Mathematical constant A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Cons ...
* Mathematical sciences * Mathematics and art * Mathematics education *
Outline of mathematics Mathematics is a field of study that investigates topics such as number, space, structure, and change. Philosophy Nature * Definitions of mathematics – Mathematics has no generally accepted definition. Different schools of thought, particul ...
* Philosophy of mathematics *
Relationship between mathematics and physics The relationship between mathematics and physics has been a subject of study of philosophers, mathematicians and physicists since Antiquity, and more recently also by historians and educators. Generally considered a relationship of great intima ...
*
Science, technology, engineering, and mathematics Science, technology, engineering, and mathematics (STEM) is an umbrella term used to group together the distinct but related technical disciplines of science, technology, engineering, and mathematics. The term is typically used in the context of ...


Notes


References


Bibliography

* * * * * * * . * * * * * *


Further reading

* * Availabl
online
(registration required). * * *  – A translated and expanded version of a Soviet mathematics encyclopedia, in ten volumes. Also in paperback and on CD-ROM, an
online
. * * * {{Authority control Formal sciences Main topic articles