Data Compression
   HOME

TheInfoList



OR:

In
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder. The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding; encoding done at the source of the data before it is stored or transmitted. Source coding should not be confused with
channel coding In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is ...
, for error detection and correction or line coding, the means for mapping data onto a signal. Compression is useful because it reduces the resources required to store and transmit data. Computational resources are consumed in the compression and decompression processes. Data compression is subject to a space–time complexity trade-off. For instance, a compression scheme for video may require expensive hardware for the video to be decompressed fast enough to be viewed as it is being decompressed, and the option to decompress the video in full before watching it may be inconvenient or require additional storage. The design of data compression schemes involves trade-offs among various factors, including the degree of compression, the amount of distortion introduced (when using lossy data compression), and the computational resources required to compress and decompress the data.


Lossless

Lossless data compression algorithms usually exploit statistical redundancy to represent data without losing any information, so that the process is reversible. Lossless compression is possible because most real-world data exhibits statistical redundancy. For example, an image may have areas of color that do not change over several pixels; instead of coding "red pixel, red pixel, ..." the data may be encoded as "279 red pixels". This is a basic example of
run-length encoding Run-length encoding (RLE) is a form of lossless data compression in which ''runs'' of data (sequences in which the same data value occurs in many consecutive data elements) are stored as a single data value and count, rather than as the original ...
; there are many schemes to reduce file size by eliminating redundancy. The Lempel–Ziv (LZ) compression methods are among the most popular algorithms for lossless storage. DEFLATE is a variation on LZ optimized for decompression speed and compression ratio, but compression can be slow. In the mid-1980s, following work by
Terry Welch Terry Archer Welch was an American computer scientist. Along with Abraham Lempel and Jacob Ziv, he developed the lossless Lempel–Ziv–Welch (LZW) compression algorithm, which was published in 1984. Education Welch received a Bachelor of Scienc ...
, the Lempel–Ziv–Welch (LZW) algorithm rapidly became the method of choice for most general-purpose compression systems. LZW is used in
GIF The Graphics Interchange Format (GIF; or , see pronunciation) is a bitmap image format that was developed by a team at the online services provider CompuServe led by American computer scientist Steve Wilhite and released on 15 June 1987. ...
images, programs such as PKZIP, and hardware devices such as modems. LZ methods use a table-based compression model where table entries are substituted for repeated strings of data. For most LZ methods, this table is generated dynamically from earlier data in the input. The table itself is often Huffman encoded. Grammar-based codes like this can compress highly repetitive input extremely effectively, for instance, a biological data collection of the same or closely related species, a huge versioned document collection, internet archival, etc. The basic task of grammar-based codes is constructing a context-free grammar deriving a single string. Other practical grammar compression algorithms include Sequitur and Re-Pair. The strongest modern lossless compressors use
probabilistic Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
models, such as prediction by partial matching. The Burrows–Wheeler transform can also be viewed as an indirect form of statistical modelling. In a further refinement of the direct use of probabilistic modelling, statistical estimates can be coupled to an algorithm called arithmetic coding. Arithmetic coding is a more modern coding technique that uses the mathematical calculations of a finite-state machine to produce a string of encoded bits from a series of input data symbols. It can achieve superior compression compared to other techniques such as the better-known Huffman algorithm. It uses an internal memory state to avoid the need to perform a one-to-one mapping of individual input symbols to distinct representations that use an integer number of bits, and it clears out the internal memory only after encoding the entire string of data symbols. Arithmetic coding applies especially well to adaptive data compression tasks where the statistics vary and are context-dependent, as it can be easily coupled with an adaptive model of the
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
of the input data. An early example of the use of arithmetic coding was in an optional (but not widely used) feature of the
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and imag ...
image coding standard. It has since been applied in various other designs including
H.263 H.263 is a video compression standard originally designed as a low-bit-rate compressed format for videotelephony. It was standardized by the ITU-T Video Coding Experts Group (VCEG) in a project ending in 1995/1996. It is a member of the H.26x fam ...
, H.264/MPEG-4 AVC and HEVC for video coding. Archive software typically has the ability to adjust the "dictionary size", where a larger size demands more
random access memory Random-access memory (RAM; ) is a form of computer memory that can be read and changed in any order, typically used to store working Data (computing), data and machine code. A Random access, random-access memory device allows data items to b ...
during compression and decompression, but compresses stronger, especially on repeating patterns in files' content.


Lossy

In the late 1980s, digital images became more common, and standards for lossless
image compression Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior r ...
emerged. In the early 1990s, lossy compression methods began to be widely used. In these schemes, some loss of information is accepted as dropping nonessential detail can save storage space. There is a corresponding trade-off between preserving information and reducing size. Lossy data compression schemes are designed by research on how people perceive the data in question. For example, the human eye is more sensitive to subtle variations in
luminance Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls withi ...
than it is to the variations in color.
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and imag ...
image compression works in part by rounding off nonessential bits of information. A number of popular compression formats exploit these perceptual differences, including psychoacoustics for sound, and
psychovisual A human visual system model (HVS model) is used by image processing, video processing and computer vision experts to deal with biological and psychological processes that are not yet fully understood. Such a model is used to simplify the behavio ...
s for images and video. Most forms of lossy compression are based on transform coding, especially the discrete cosine transform (DCT). It was first proposed in 1972 by Nasir Ahmed, who then developed a working algorithm with T. Natarajan and
K. R. Rao Kamisetty Ramamohan Rao was an Indian-American electrical engineer. He was a professor of Electrical Engineering at the University of Texas at Arlington (UT Arlington). Academically known as K. R. Rao, he is credited with the co-invention of di ...
in 1973, before introducing it in January 1974. DCT is the most widely used lossy compression method, and is used in multimedia formats for images (such as
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and imag ...
and HEIF), video (such as MPEG,
AVC AVC may refer to: Organizations * Asian Volleyball Confederation, the continental governing body for the sport of volleyball in Asia * Advanced Video Communications, owner of Stickam * ¡Alfaro Vive, Carajo!, a defunct left-wing group in Ecuador ...
and HEVC) and audio (such as MP3,
AAC AAC may refer to: Aviation * Advanced Aircraft, a company from Carlsbad, California * Alaskan Air Command, a radar network * American Aeronautical Corporation, a company from Port Washington, New York * American Aviation, a company from Cleveland, ...
and Vorbis). Lossy
image compression Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior r ...
is used in digital cameras, to increase storage capacities. Similarly, DVDs, Blu-ray and
streaming video Video on demand (VOD) is a media distribution system that allows users to access videos without a traditional video playback device and the constraints of a typical static broadcasting schedule. In the 20th century, broadcasting in the form of o ...
use lossy video coding formats. Lossy compression is extensively used in video. In lossy audio compression, methods of psychoacoustics are used to remove non-audible (or less audible) components of the
audio signal An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of r ...
. Compression of human speech is often performed with even more specialized techniques; speech coding is distinguished as a separate discipline from general-purpose audio compression. Speech coding is used in internet telephony, for example, audio compression is used for CD ripping and is decoded by the audio players. Lossy compression can cause generation loss.


Theory

The theoretical basis for compression is provided by
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
and, more specifically, algorithmic information theory for lossless compression and
rate–distortion theory Rate–distortion theory is a major branch of information theory which provides the theoretical foundations for lossy data compression; it addresses the problem of determining the minimal number of bits per symbol, as measured by the rate ''R'', ...
for lossy compression. These areas of study were essentially created by Claude Shannon, who published fundamental papers on the topic in the late 1940s and early 1950s. Other topics associated with compression include coding theory and
statistical inference Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution, distribution of probability.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical ...
.


Machine learning

There is a close connection between machine learning and compression. A system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution). Conversely, an optimal compressor can be used for prediction (by finding the symbol that compresses best, given the previous history). This equivalence has been used as a justification for using data compression as a benchmark for "general intelligence". An alternative view can show compression algorithms implicitly map strings into implicit feature space vectors, and compression-based similarity measures compute similarity within these feature spaces. For each compressor C(.) we define an associated vector space ℵ, such that C(.) maps an input string x, corresponding to the vector norm , , ~x, , . An exhaustive examination of the feature spaces underlying all compression algorithms is precluded by space; instead, feature vectors chooses to examine three representative lossless compression methods, LZW, LZ77, and PPM. According to AIXI theory, a connection more directly explained in Hutter Prize, the best possible compression of x is the smallest possible software that generates x. For example, in that model, a zip file's compressed size includes both the zip file and the unzipping software, since you can't unzip it without both, but there may be an even smaller combined form.


Data differencing

Data compression can be viewed as a special case of data differencing. Data differencing consists of producing a ''difference'' given a ''source'' and a ''target,'' with patching reproducing the ''target'' given a ''source'' and a ''difference.'' Since there is no separate source and target in data compression, one can consider data compression as data differencing with empty source data, the compressed file corresponding to a difference from nothing. This is the same as considering absolute entropy (corresponding to data compression) as a special case of relative entropy (corresponding to data differencing) with no initial data. The term ''differential compression'' is used to emphasize the data differencing connection.


Uses


Image

Entropy coding originated in the 1940s with the introduction of Shannon–Fano coding, the basis for Huffman coding which was developed in 1950. Transform coding dates back to the late 1960s, with the introduction of
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in th ...
(FFT) coding in 1968 and the Hadamard transform in 1969. An important
image compression Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior r ...
technique is the discrete cosine transform (DCT), a technique developed in the early 1970s. DCT is the basis for
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and imag ...
, a lossy compression format which was introduced by the Joint Photographic Experts Group (JPEG) in 1992. JPEG greatly reduces the amount of data required to represent an image at the cost of a relatively small reduction in image quality and has become the most widely used image file format. Its highly efficient DCT-based compression algorithm was largely responsible for the wide proliferation of
digital image A digital image is an image composed of picture elements, also known as ''pixels'', each with ''finite'', '' discrete quantities'' of numeric representation for its intensity or gray level that is an output from its two-dimensional functions ...
s and
digital photo Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is sto ...
s. Lempel–Ziv–Welch (LZW) is a
lossless compression Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistic ...
algorithm developed in 1984. It is used in the
GIF The Graphics Interchange Format (GIF; or , see pronunciation) is a bitmap image format that was developed by a team at the online services provider CompuServe led by American computer scientist Steve Wilhite and released on 15 June 1987. ...
format, introduced in 1987. DEFLATE, a lossless compression algorithm specified in 1996, is used in the
Portable Network Graphics Portable Network Graphics (PNG, officially pronounced , colloquially pronounced ) is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange F ...
(PNG) format. Wavelet compression, the use of wavelets in image compression, began after the development of DCT coding. The
JPEG 2000 JPEG 2000 (JP2) is an image compression standard and coding system. It was developed from 1997 to 2000 by a Joint Photographic Experts Group committee chaired by Touradj Ebrahimi (later the JPEG president), with the intention of superseding the ...
standard was introduced in 2000. In contrast to the DCT algorithm used by the original JPEG format, JPEG 2000 instead uses discrete wavelet transform (DWT) algorithms. JPEG 2000 technology, which includes the Motion JPEG 2000 extension, was selected as the video coding standard for digital cinema in 2004.


Audio

Audio data compression, not to be confused with dynamic range compression, has the potential to reduce the transmission bandwidth and storage requirements of audio data. Audio compression algorithms are implemented in software as audio codecs. In both lossy and lossless compression, information redundancy is reduced, using methods such as coding, quantization, discrete cosine transform and linear prediction to reduce the amount of information used to represent the uncompressed data. Lossy audio compression algorithms provide higher compression and are used in numerous audio applications including Vorbis and MP3. These algorithms almost all rely on psychoacoustics to eliminate or reduce fidelity of less audible sounds, thereby reducing the space required to store or transmit them. The acceptable trade-off between loss of audio quality and transmission or storage size depends upon the application. For example, one 640 MB compact disc (CD) holds approximately one hour of uncompressed high fidelity music, less than 2 hours of music compressed losslessly, or 7 hours of music compressed in the MP3 format at a medium
bit rate In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction w ...
. A digital sound recorder can typically store around 200 hours of clearly intelligible speech in 640 MB. Lossless audio compression produces a representation of digital data that can be decoded to an exact digital duplicate of the original. Compression ratios are around 50–60% of the original size, which is similar to those for generic lossless data compression. Lossless codecs use curve fitting or linear prediction as a basis for estimating the signal. Parameters describing the estimation and the difference between the estimation and the actual signal are coded separately. A number of lossless audio compression formats exist. See list of lossless codecs for a listing. Some formats are associated with a distinct system, such as Direct Stream Transfer, used in Super Audio CD and Meridian Lossless Packing, used in DVD-Audio, Dolby TrueHD, Blu-ray and HD DVD. Some audio file formats feature a combination of a lossy format and a lossless correction; this allows stripping the correction to easily obtain a lossy file. Such formats include MPEG-4 SLS (Scalable to Lossless), WavPack, and OptimFROG DualStream. When audio files are to be processed, either by further compression or for editing, it is desirable to work from an unchanged original (uncompressed or losslessly compressed). Processing of a lossily compressed file for some purpose usually produces a final result inferior to the creation of the same compressed file from an uncompressed original. In addition to sound editing or mixing, lossless audio compression is often used for archival storage, or as master copies.


Lossy audio compression

Lossy audio compression is used in a wide range of applications. In addition to standalone audio-only applications of file playback in MP3 players or computers, digitally compressed audio streams are used in most video DVDs, digital television, streaming media on the Internet, satellite and cable radio, and increasingly in terrestrial radio broadcasts. Lossy compression typically achieves far greater compression than lossless compression, by discarding less-critical data based on psychoacoustic optimizations. Psychoacoustics recognizes that not all data in an audio stream can be perceived by the human
auditory system The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs (the ears) and the auditory parts of the sensory system. System overview The outer ear funnels sound vibrations to the eardrum, increasin ...
. Most lossy compression reduces redundancy by first identifying perceptually irrelevant sounds, that is, sounds that are very hard to hear. Typical examples include high frequencies or sounds that occur at the same time as louder sounds. Those irrelevant sounds are coded with decreased accuracy or not at all. Due to the nature of lossy algorithms, audio quality suffers a
digital generation loss Generation loss is the loss of quality between subsequent copies or transcodes of data. Anything that reduces the quality of the representation when copying, and would cause further reduction in quality on making a copy of the copy, can be consi ...
when a file is decompressed and recompressed. This makes lossy compression unsuitable for storing the intermediate results in professional audio engineering applications, such as sound editing and multitrack recording. However, lossy formats such as MP3 are very popular with end-users as the file size is reduced to 5-20% of the original size and a megabyte can store about a minute's worth of music at adequate quality.


= Coding methods

= To determine what information in an audio signal is perceptually irrelevant, most lossy compression algorithms use transforms such as the
modified discrete cosine transform The modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped transform, lapped: it is designed to be performed on consecutive blocks of a larger ...
(MDCT) to convert time domain sampled waveforms into a transform domain, typically the frequency domain. Once transformed, component frequencies can be prioritized according to how audible they are. Audibility of spectral components is assessed using the absolute threshold of hearing and the principles of simultaneous masking—the phenomenon wherein a signal is masked by another signal separated by frequency—and, in some cases, temporal masking—where a signal is masked by another signal separated by time.
Equal-loudness contour An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and ...
s may also be used to weigh the perceptual importance of components. Models of the human ear-brain combination incorporating such effects are often called psychoacoustic models. Other types of lossy compressors, such as the linear predictive coding (LPC) used with speech, are source-based coders. LPC uses a model of the human vocal tract to analyze speech sounds and infer the parameters used by the model to produce them moment to moment. These changing parameters are transmitted or stored and used to drive another model in the decoder which reproduces the sound. Lossy formats are often used for the distribution of streaming audio or interactive communication (such as in cell phone networks). In such applications, the data must be decompressed as the data flows, rather than after the entire data stream has been transmitted. Not all audio codecs can be used for streaming applications. Latency is introduced by the methods used to encode and decode the data. Some codecs will analyze a longer segment, called a ''frame'', of the data to optimize efficiency, and then code it in a manner that requires a larger segment of data at one time to decode. The inherent latency of the coding algorithm can be critical; for example, when there is a two-way transmission of data, such as with a telephone conversation, significant delays may seriously degrade the perceived quality. In contrast to the speed of compression, which is proportional to the number of operations required by the algorithm, here latency refers to the number of samples that must be analyzed before a block of audio is processed. In the minimum case, latency is zero samples (e.g., if the coder/decoder simply reduces the number of bits used to quantize the signal). Time domain algorithms such as LPC also often have low latencies, hence their popularity in speech coding for telephony. In algorithms such as MP3, however, a large number of samples have to be analyzed to implement a psychoacoustic model in the frequency domain, and latency is on the order of 23 ms.


= Speech encoding

= Speech encoding is an important category of audio data compression. The perceptual models used to estimate what aspects of speech a human ear can hear are generally somewhat different from those used for music. The range of frequencies needed to convey the sounds of a human voice is normally far narrower than that needed for music, and the sound is normally less complex. As a result, speech can be encoded at high quality using a relatively low bit rate. This is accomplished, in general, by some combination of two approaches: * Only encoding sounds that could be made by a single human voice. * Throwing away more of the data in the signal—keeping just enough to reconstruct an "intelligible" voice rather than the full frequency range of human hearing. The earliest algorithms used in speech encoding (and audio data compression in general) were the A-law algorithm and the μ-law algorithm.


History

Early audio research was conducted at Bell Labs. There, in 1950,
C. Chapin Cutler Cassius Chapin Cutler (December 16, 1914 – December 1, 2002) was an American electrical engineer at Bell Labs. His notable achievements include the invention of the corrugated waveguide and differential pulse-code modulation (DPCM). Biogr ...
filed the patent on differential pulse-code modulation (DPCM). In 1973, Adaptive DPCM (ADPCM) was introduced by P. Cummiskey, Nikil S. Jayant and James L. Flanagan. Perceptual coding was first used for speech coding compression, with linear predictive coding (LPC). Initial concepts for LPC date back to the work of Fumitada Itakura (
Nagoya University , abbreviated to or NU, is a Japanese national research university located in Chikusa-ku, Nagoya. It was the seventh Imperial University in Japan, one of the first five Designated National University and selected as a Top Type university of T ...
) and Shuzo Saito ( Nippon Telegraph and Telephone) in 1966. During the 1970s,
Bishnu S. Atal Bishnu S. Atal (born 1933) is an Indian physicist and engineer. He is a noted researcher in acoustics, and is best known for developments in speech coding. He advanced linear predictive coding (LPC) during the late 1960s to 1970s, and develope ...
and
Manfred R. Schroeder Manfred Robert Schroeder (12 July 1926 – 28 December 2009) was a German physicist, most known for his contributions to acoustics and computer graphics. He wrote three books and published over 150 articles in his field. Born in Ahlen, he stud ...
at Bell Labs developed a form of LPC called
adaptive predictive coding Adaptive predictive coding (APC) is a narrowband analog-to-digital conversion that uses a one-level or multilevel sampling system in which the value of the signal at each sampling instant is predicted according to a linear function of the past valu ...
(APC), a perceptual coding algorithm that exploited the masking properties of the human ear, followed in the early 1980s with the code-excited linear prediction (CELP) algorithm which achieved a significant
compression ratio The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values. A fundamental specification for such engines, it is measured two ways: the stati ...
for its time. Perceptual coding is used by modern audio compression formats such as MP3 and
AAC AAC may refer to: Aviation * Advanced Aircraft, a company from Carlsbad, California * Alaskan Air Command, a radar network * American Aeronautical Corporation, a company from Port Washington, New York * American Aviation, a company from Cleveland, ...
. Discrete cosine transform (DCT), developed by Nasir Ahmed, T. Natarajan and
K. R. Rao Kamisetty Ramamohan Rao was an Indian-American electrical engineer. He was a professor of Electrical Engineering at the University of Texas at Arlington (UT Arlington). Academically known as K. R. Rao, he is credited with the co-invention of di ...
in 1974, provided the basis for the
modified discrete cosine transform The modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped transform, lapped: it is designed to be performed on consecutive blocks of a larger ...
(MDCT) used by modern audio compression formats such as MP3,
Dolby Digital Dolby Digital, originally synonymous with Dolby AC-3, is the name for what has now become a family of audio compression technologies developed by Dolby Laboratories. Formerly named Dolby Stereo Digital until 1995, the audio compression is lossy ...
, and AAC. MDCT was proposed by J. P. Princen, A. W. Johnson and A. B. Bradley in 1987, following earlier work by Princen and Bradley in 1986. The world's first commercial
broadcast automation Broadcast automation incorporates the use of broadcast programming technology to automate broadcasting operations. Used either at a broadcast network, radio station or a television station, it can run a facility in the absence of a human opera ...
audio compression system was developed by Oscar Bonello, an engineering professor at the University of Buenos Aires. In 1983, using the psychoacoustic principle of the masking of critical bands first published in 1967, he started developing a practical application based on the recently developed
IBM PC The IBM Personal Computer (model 5150, commonly known as the IBM PC) is the first microcomputer released in the IBM PC model line and the basis for the IBM PC compatible de facto standard. Released on August 12, 1981, it was created by a team ...
computer, and the broadcast automation system was launched in 1987 under the name
Audicom Audicom was the first system in the world to record and play audio from a PC computer, beginning in 1988 the era of digital recording that would eliminate recorders from magnetic and cassette tape used for half a century. Invention This technolo ...
. Twenty years later, almost all the radio stations in the world were using similar technology manufactured by a number of companies. A literature compendium for a large variety of audio coding systems was published in the IEEE's ''Journal on Selected Areas in Communications'' (''JSAC''), in February 1988. While there were some papers from before that time, this collection documented an entire variety of finished, working audio coders, nearly all of them using perceptual techniques and some kind of frequency analysis and back-end noiseless coding.


Video

Uncompressed video requires a very high
data rate Data rate and data transfer rate can refer to several related and overlapping concepts in communications networks: Achieved rate * Bit rate, the number of bits that are conveyed or processed per unit of time ** Data signaling rate or gross bit rate ...
. Although lossless video compression codecs perform at a compression factor of 5 to 12, a typical H.264 lossy compression video has a compression factor between 20 and 200. The two key video compression techniques used in
video coding standards A video coding format (or sometimes video compression format) is a content representation format for storage or transmission of digital video content (such as in a data file or bitstream). It typically uses a standardized video compression algo ...
are the discrete cosine transform (DCT) and motion compensation (MC). Most video coding standards, such as the H.26x and MPEG formats, typically use motion-compensated DCT video coding (block motion compensation). Most video codecs are used alongside audio compression techniques to store the separate but complementary data streams as one combined package using so-called ''
container format A container format (informally, sometimes called a wrapper) or metafile is a file format that allows multiple data streams to be embedded into a single file, usually along with metadata for identifying and further detailing those streams. Notab ...
s''.


Encoding theory

Video data may be represented as a series of still image frames. Such data usually contains abundant amounts of spatial and temporal redundancy. Video compression algorithms attempt to reduce redundancy and store information more compactly. Most
video compression formats A video coding format (or sometimes video compression format) is a content representation format for storage or transmission of digital video content (such as in a data file or bitstream). It typically uses a standardized video compression alg ...
and codecs exploit both spatial and temporal redundancy (e.g. through difference coding with motion compensation). Similarities can be encoded by only storing differences between e.g. temporally adjacent frames (inter-frame coding) or spatially adjacent pixels (intra-frame coding). Inter-frame compression (a temporal delta encoding) (re)uses data from one or more earlier or later frames in a sequence to describe the current frame. Intra-frame coding, on the other hand, uses only data from within the current frame, effectively being still-
image compression Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior r ...
. The intra-frame video coding formats used in camcorders and video editing employ simpler compression that uses only intra-frame prediction. This simplifies video editing software, as it prevents a situation in which a compressed frame refers to data that the editor has deleted. Usually, video compression additionally employs lossy compression techniques like quantization that reduce aspects of the source data that are (more or less) irrelevant to the human visual perception by exploiting perceptual features of human vision. For example, small differences in color are more difficult to perceive than are changes in brightness. Compression algorithms can average a color across these similar areas in a manner similar to those used in
JPEG JPEG ( ) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and imag ...
image compression. As in all lossy compression, there is a trade-off between video quality and
bit rate In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction w ...
, cost of processing the compression and decompression, and system requirements. Highly compressed video may present visible or distracting artifacts. Other methods other than the prevalent DCT-based transform formats, such as fractal compression, matching pursuit and the use of a discrete wavelet transform (DWT), have been the subject of some research, but are typically not used in practical products. Wavelet compression is used in still-image coders and video coders without motion compensation. Interest in fractal compression seems to be waning, due to recent theoretical analysis showing a comparative lack of effectiveness of such methods.


= Inter-frame coding

= In inter-frame coding, individual frames of a video sequence are compared from one frame to the next, and the video compression codec records the differences to the reference frame. If the frame contains areas where nothing has moved, the system can simply issue a short command that copies that part of the previous frame into the next one. If sections of the frame move in a simple manner, the compressor can emit a (slightly longer) command that tells the decompressor to shift, rotate, lighten, or darken the copy. This longer command still remains much shorter than data generated by intra-frame compression. Usually, the encoder will also transmit a residue signal which describes the remaining more subtle differences to the reference imagery. Using entropy coding, these residue signals have a more compact representation than the full signal. In areas of video with more motion, the compression must encode more data to keep up with the larger number of pixels that are changing. Commonly during explosions, flames, flocks of animals, and in some panning shots, the high-frequency detail leads to quality decreases or to increases in the variable bitrate.


Hybrid block-based transform formats

Today, nearly all commonly used video compression methods (e.g., those in standards approved by the ITU-T or ISO) share the same basic architecture that dates back to H.261 which was standardized in 1988 by the ITU-T. They mostly rely on the DCT, applied to rectangular blocks of neighboring pixels, and temporal prediction using
motion vector Motion estimation is the process of determining ''motion vectors'' that describe the transformation from one 2D image to another; usually from adjacent frames in a video sequence. It is an ill-posed problem as the motion is in three dimensions b ...
s, as well as nowadays also an in-loop filtering step. In the prediction stage, various
deduplication The term deduplication refers generally to eliminating duplicate or redundant information. *Data deduplication, in computer storage, refers to the elimination of redundant data *Record linkage Record linkage (also known as data matching, data l ...
and difference-coding techniques are applied that help decorrelate data and describe new data based on already transmitted data. Then rectangular blocks of remaining pixel data are transformed to the frequency domain. In the main lossy processing stage, frequency domain data gets quantized in order to reduce information that is irrelevant to human visual perception. In the last stage statistical redundancy gets largely eliminated by an entropy coder which often applies some form of arithmetic coding. In an additional in-loop filtering stage various filters can be applied to the reconstructed image signal. By computing these filters also inside the encoding loop they can help compression because they can be applied to reference material before it gets used in the prediction process and they can be guided using the original signal. The most popular example are deblocking filters that blur out blocking artifacts from quantization discontinuities at transform block boundaries.


History

In 1967, A.H. Robinson and C. Cherry proposed a
run-length encoding Run-length encoding (RLE) is a form of lossless data compression in which ''runs'' of data (sequences in which the same data value occurs in many consecutive data elements) are stored as a single data value and count, rather than as the original ...
bandwidth compression scheme for the transmission of analog television signals. Discrete cosine transform (DCT), which is fundamental to modern video compression, was introduced by Nasir Ahmed, T. Natarajan and
K. R. Rao Kamisetty Ramamohan Rao was an Indian-American electrical engineer. He was a professor of Electrical Engineering at the University of Texas at Arlington (UT Arlington). Academically known as K. R. Rao, he is credited with the co-invention of di ...
in 1974. H.261, which debuted in 1988, commercially introduced the prevalent basic architecture of video compression technology. It was the first video coding format based on DCT compression. H.261 was developed by a number of companies, including
Hitachi () is a Japanese multinational corporation, multinational Conglomerate (company), conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Ni ...
, PictureTel, NTT, BT and Toshiba. The most popular video coding standards used for codecs have been the MPEG standards. MPEG-1 was developed by the Motion Picture Experts Group (MPEG) in 1991, and it was designed to compress VHS-quality video. It was succeeded in 1994 by
MPEG-2 MPEG-2 (a.k.a. H.222/H.262 as was defined by the ITU) is a standard for "the generic video coding format, coding of moving pictures and associated audio information". It describes a combination of Lossy compression, lossy video compression and ...
/
H.262 H.262 or MPEG-2 Part 2 (formally known as ITU-T Recommendation H.262 and ISO/IEC 13818-2, also known as MPEG-2 Video) is a video coding format standardised and jointly maintained by ITU-T Study Group 16 Video Coding Experts Group (VCEG) and Inte ...
, which was developed by a number of companies, primarily Sony, Thomson and
Mitsubishi Electric , established on 15 January 1921, is a Japanese multinational electronics and electrical equipment manufacturing company headquartered in Tokyo, Japan. It is one of the core companies of Mitsubishi. The products from MELCO include elevators an ...
. MPEG-2 became the standard video format for DVD and
SD digital television Standard-definition television (SDTV, SD, often shortened to standard definition) is a television system which uses a resolution that is not considered to be either high or enhanced definition. "Standard" refers to it being the prevailing sp ...
. In 1999, it was followed by
MPEG-4 MPEG-4 is a group of international standards for the compression of digital audio and visual data, multimedia systems, and file storage formats. It was originally introduced in late 1998 as a group of audio and video coding formats and related tec ...
/
H.263 H.263 is a video compression standard originally designed as a low-bit-rate compressed format for videotelephony. It was standardized by the ITU-T Video Coding Experts Group (VCEG) in a project ending in 1995/1996. It is a member of the H.26x fam ...
. It was also developed by a number of companies, primarily Mitsubishi Electric,
Hitachi () is a Japanese multinational corporation, multinational Conglomerate (company), conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Ni ...
and Panasonic. H.264/MPEG-4 AVC was developed in 2003 by a number of organizations, primarily Panasonic, Godo Kaisha IP Bridge and LG Electronics. AVC commercially introduced the modern context-adaptive binary arithmetic coding (CABAC) and context-adaptive variable-length coding (CAVLC) algorithms. AVC is the main video encoding standard for
Blu-ray Disc The Blu-ray Disc (BD), often known simply as Blu-ray, is a Digital media, digital optical disc data storage format. It was invented and developed in 2005 and released on June 20, 2006 worldwide. It is designed to supersede the DVD format, and c ...
s, and is widely used by video sharing websites and streaming internet services such as YouTube, Netflix, Vimeo, and iTunes Store, web software such as Adobe Flash Player and Microsoft Silverlight, and various HDTV broadcasts over terrestrial and satellite television.


Genetics

Genetics compression algorithms are the latest generation of lossless algorithms that compress data (typically sequences of nucleotides) using both conventional compression algorithms and genetic algorithms adapted to the specific datatype. In 2012, a team of scientists from Johns Hopkins University published a genetic compression algorithm that does not use a reference genome for compression. HAPZIPPER was tailored for HapMap data and achieves over 20-fold compression (95% reduction in file size), providing 2- to 4-fold better compression and is less computationally intensive than the leading general-purpose compression utilities. For this, Chanda, Elhaik, and Bader introduced MAF-based encoding (MAFE), which reduces the heterogeneity of the dataset by sorting SNPs by their minor allele frequency, thus homogenizing the dataset. Other algorithms developed in 2009 and 2013 (DNAZip and GenomeZip) have compression ratios of up to 1200-fold—allowing 6 billion basepair diploid human genomes to be stored in 2.5 megabytes (relative to a reference genome or averaged over many genomes). For a benchmark in genetics/genomics data compressors, see


Outlook and currently unused potential

It is estimated that the total amount of data that is stored on the world's storage devices could be further compressed with existing compression algorithms by a remaining average factor of 4.5:1. It is estimated that the combined technological capacity of the world to store information provides 1,300 exabytes of hardware digits in 2007, but when the corresponding content is optimally compressed, this only represents 295 exabytes of Shannon information.


See also

* HTTP compression * Kolmogorov complexity * Minimum description length *
Modulo-N code Modulo-''N'' code is a lossy compression algorithm used to compress correlated data sources using modular arithmetic. Compression When applied to two nodes in a network whose data are in close range of each other modulo-''N'' code requires one n ...
*
Motion coding In Video compression#Video, video compression technology, motion coding is a technique that can be viewed as extensions of the standard Block-matching algorithm, block-matching techniques in other MPEG standard to image sequences of arbitrary shape. ...
* Range coding *
Set redundancy compression In computer science and information theory, set redundancy compression are methods of data compression In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than th ...
*
Sub-band coding In signal processing, sub-band coding (SBC) is any form of transform coding that breaks a signal into a number of different frequency bands, typically by using a fast Fourier transform, and encodes each one independently. This decomposition is ...
* Universal code (data compression) * Vector quantization


References


External links

* * * * *
EBU subjective listening tests on low-bitrate audio codecs

Audio Archiving Guide: Music Formats
(Guide for helping a user pick out the right codec) *
hydrogenaudio wiki comparison

Introduction to Data Compression
by Guy E Blelloch from CMU
Explanation of lossless signal compression method used by most codecs
* *

{{Authority control Digital audio Digital television Film and video technology Video compression Videotelephony Utility software types