HOME

TheInfoList



OR:

Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
that in humans is encoded by the WRN
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. WRN is a member of the
RecQ Helicase RecQ helicase is a family of helicase enzymes initially found in ''Escherichia coli'' that has been shown to be important in genome maintenance. They function through catalyzing the reaction ATP + H2O → ADP + P and thus driving the unwin ...
family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division (
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritance ...
). Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA. The WRN gene is located on the short (p) arm of
chromosome 8 Chromosome 8 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 8 spans about 145 million base pairs (the building material of DNA) and represents between 4.5 and 5.0% of the total DNA ...
between positions 12 and 11.2, from
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
31,010,319 to base pair 31,150,818.


Structure and function

WRN is a member of the
RecQ Helicase RecQ helicase is a family of helicase enzymes initially found in ''Escherichia coli'' that has been shown to be important in genome maintenance. They function through catalyzing the reaction ATP + H2O → ADP + P and thus driving the unwin ...
family. It is the only RecQ Helicase that contains 3' to 5'
exonuclease Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is t ...
activity. These exonuclease activities include degradation of recessed 3' ends and initiation of DNA degradation from a gap in dsDNA. WRN is important in
repair The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, and residential installa ...
of double strand breaks by
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be ...
or
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direct ...
, repair of single nucleotide damages by
base excision repair Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from t ...
, and is effective in replication arrest recovery. WRN may also be important in telomere maintenance and replication, especially the replication of the G-rich sequences. WRN is an
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
that can act as a monomer when unwinding DNA, but as a dimer in solution or a tetramer when complexed with DNA, and has also been observed in hexameric forms. The diffusion of WRN has been measured to 1.62 \tfrac in nucleoplasm and 0.12 \textstyle \tfrac at nucleoli. Orthologs of WRN have been found in a number of other organisms, including ''Drosophila'', ''
Xenopus ''Xenopus'' () (Gk., ξενος, ''xenos''=strange, πους, ''pous''=foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known ...
'', and ''C. elegans''. WRN is important to genome stability, and cells with mutations to WRN are more susceptible to DNA damage and DNA breaks. The
amino terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
of WRN is involved in both
helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating ...
and
nuclease A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their t ...
activities, while the carboxyl-terminus interacts with
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often ...
, an important tumor suppressor. WRN may function as an exonuclease in DNA repair, recombination, or replication, as well as resolution of DNA secondary structures. It is involved in branch migration at
Holliday junction A Holliday junction is a branched nucleic acid structure that contains four double-stranded arms joined. These arms may adopt one of several conformations depending on buffer salt concentrations and the sequence of nucleobases closest to the ju ...
s, and it interacts with other DNA replication intermediates. mRNA that codes for WRN has been identified in most human tissues.


Post-translational modification

Phosphorylation of WRN at serine/threonine inhibits helicase and exonuclease activities which are important to post-replication DNA repair. De-phosphorylation at these sites enhances the catalytic activities of WRN. Phosphorylation may affect other post-translational modifications, including sumoylation and acetylation. Methylation of WRN causes the gene to turn off. This suppresses the production of the WRN protein and its functions in DNA repair.


Clinical significance

Werner syndrome Werner syndrome (WS) or Werner's syndrome, also known as "adult progeria",James, William; Berger, Timothy; Elston, Dirk (2005). ''Andrews' Diseases of the Skin: Clinical Dermatology''. (10th ed.). Saunders. . is a rare, autosomal recessive disord ...
is caused by
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitos ...
s in the WRN gene. More than 20 mutations in the WRN gene are known to cause Werner syndrome. Many of these mutations result in an abnormally shortened Werner protein. Evidence suggests that the altered protein is not transported into the
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
, where it normally interacts with DNA. This shortened protein may also be broken down too quickly, leading to a loss of Werner protein in the cell. Without normal Werner protein in the nucleus, cells cannot perform the tasks of DNA replication, repair, and transcription. Researchers are still determining how these mutations cause the appearance of premature
aging Ageing ( BE) or aging ( AE) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. I ...
seen in Werner syndrome.


WRN roles in DNA repair pathways


Homologous recombinational repair

WRN is active in
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be ...
. Cells defective in the ''WRN'' gene have a 23-fold reduction in spontaneous mitotic recombination, with especial deficiency in conversion-type events. ''WRN'' defective cells, when exposed to x-rays, have more chromosome breaks and micronuclei than cells with wild-type WRN. Cells defective in the ''WRN'' gene are not more sensitive than wild-type cells to gamma-irradiation, UV light, 4 – 6 cyclobutane pyrimidines, or mitomycin C, but are sensitive to type I and type II topoisomerase inhibitors. These findings suggested that the WRN protein takes part in homologous recombinational repair and in the processing of stalled replication forks.


Non-homologous end joining

WRN has an important role in
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direct ...
(NHEJ) DNA repair. As shown by Shamanna et al., WRN is recruited to double-strand breaks (DSBs) and participates in NHEJ with its enzymatic and non-enzymatic functions. At DSBs, in association with
Ku (protein) Ku is a dimeric protein complex that binds to DNA double-strand break ends and is required for the non-homologous end joining (NHEJ) pathway of DNA repair. Ku is evolutionarily conserved from bacteria to humans. The ancestral bacterial Ku ...
, it promotes standard or canonical NHEJ (c-NHEJ), repairing double-strand breaks in DNA with its enzymatic functions and with a fair degree of accuracy. WRN inhibits an alternative form of NHEJ, called alt-NHEJ or
microhomology-mediated end joining Microhomology-mediated end joining (MMEJ), also known as alternative nonhomologous end-joining (Alt-NHEJ) is one of the pathways for repairing double-strand breaks in DNA. As reviewed by McVey and Lee, the foremost distinguishing property of MMEJ i ...
(MMEJ). MMEJ is an inaccurate mode of repair for double-strand breaks.


Base excision repair

WRN has a role in
base excision repair Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from t ...
(BER) of DNA. As shown by Das et al., WRN associates with NEIL1 in the early damage-sensing step of BER. WRN stimulates NEIL1 in excision of oxidative lesions.
NEIL1 Endonuclease VIII-like 1 is an enzyme that in humans is encoded by the ''NEIL1'' gene. NEIL1 belongs to a class of DNA glycosylases homologous to the bacterial Fpg/Nei family. These glycosylases initiate the first step in base excision repair by ...
is a
DNA glycosylase DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first st ...
that initiates the first step in BER by cleaving bases damaged by
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () ...
(ROS) and introducing a DNA strand break via NEIL1's associated lyase activity.
NEIL1 Endonuclease VIII-like 1 is an enzyme that in humans is encoded by the ''NEIL1'' gene. NEIL1 belongs to a class of DNA glycosylases homologous to the bacterial Fpg/Nei family. These glycosylases initiate the first step in base excision repair by ...
recognizes (targets) and removes certain ROS-damaged bases and then incises the
abasic site In biochemistry and molecular genetics, an AP site (apurinic/apyrimidinic site), also known as an abasic site, is a location in DNA (also in RNA but much less likely) that has neither a purine nor a pyrimidine base, either spontaneously or due ...
via β,δ elimination, leaving 3′ and 5′ phosphate ends. NEIL1 recognizes oxidized
pyrimidine Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The othe ...
s, formamidopyrimidines,
thymine Thymine () (symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nuc ...
residues oxidized at the methyl group, and both stereoisomers of thymine glycol. WRN also participates in BER through its interaction with Polλ. WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. This allows WRN to promote long-patch DNA repair synthesis by Polλ during
MUTYH ''MUTYH'' (mutY DNA glycosylase) is a human gene that encodes a DNA glycosylase, MUTYH glycosylase. It is involved in oxidative DNA damage repair and is part of the base excision repair pathway. The enzyme excises adenine bases from the DNA backbo ...
-initiated repair of 8-oxo-G:A mispairs.


Replication arrest recovery

WRN is also involved in replication arrest recovery. If WRN is defective, replication arrest results in accumulation of DSBs and enhanced chromosome fragmentation. As shown by Pichierri et al., WRN interacts with the RAD9- RAD1-
HUS1 Checkpoint protein HUS1 is a protein that in humans is encoded by the ''HUS1'' gene. Function The protein encoded by this gene is a component of an evolutionarily conserved, genotoxin-activated checkpoint complex that is involved in the cell c ...
(9.1.1) complex, one of the central factors of the replication checkpoint. This interaction is mediated by the binding of the RAD1 subunit to the N-terminal region of WRN and is instrumental for WRN relocalization to nuclear foci and its phosphorylation in response to replication arrest. (In the absence of DNA damage or replication fork stalling, WRN protein remains localized to the nucleoli.) The interaction of WRN with the 9.1.1 complex results in prevention of DSB formation at stalled replication forks.


''WRN'' deficiencies in cancer

Cells expressing limiting amounts of WRN have elevated mutation frequencies compared with wildtype cells. Increased mutation may give rise to cancer. Patients with Werner Syndrome, with homozygous mutations in the ''WRN'' gene, have an increased incidence of cancers, including soft tissue sarcomas, osteosarcoma, thyroid cancer and melanoma. Mutations in ''WRN'' are rare in the general population. The rate of heterozygous loss of-function mutation in ''WRN'' is approximately one per million. In a Japanese population the rate is 6 per 1,000, which is higher, but still infrequent. Mutational defects in the ''WRN'' gene are relatively rare in cancer cells compared to the frequency of epigenetic alterations in ''WRN'' that reduce ''WRN'' expression and could contribute to carcinogenesis. The situation is similar to other DNA repair genes whose expression is reduced in cancers due to mainly epigenetic alterations rather than mutations (see Frequencies of epimutations in DNA repair genes). The table shows results of analysis of 630 human primary tumors for ''WRN'' CpG island hypermethylation. This hypermethylation caused reduced protein expression of WRN, a common event in tumorigenesis.


Interactions

Werner syndrome ATP-dependent helicase has been shown to
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizati ...
with: * BLM *
DNA-PKcs DNA-dependent protein kinase, catalytic subunit, also known as DNA-PKcs, is an enzyme that in humans is encoded by the gene designated as ''PRKDC'' or ''XRCC7''. DNA-PKcs belongs to the phosphatidylinositol 3-kinase-related kinase protein family. ...
, *
FEN1 Flap endonuclease 1 is an enzyme that in humans is encoded by the ''FEN1'' gene. Function The protein encoded by this gene removes 5' overhanging "flaps" (or short sections of single stranded DNA that "hang off" because their nucleotide bases a ...
, *
Ku70 Ku70 is a protein that, in humans, is encoded by the ''XRCC6'' gene. Function Together, Ku70 and Ku80 make up the Ku heterodimer, which binds to DNA double-strand break ends and is required for the non-homologous end joining (NHEJ) pathway ...
, *
Ku80 Ku80 is a protein that, in humans, is encoded by the ''XRCC5'' gene. Together, Ku70 and Ku80 make up the Ku heterodimer, which binds to DNA double-strand break ends and is required for the non-homologous end joining (NHEJ) pathway of DNA rep ...
, *
P53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often ...
, *
PCNA Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, whe ...
, *
TERF2 Telomeric repeat-binding factor 2 is a protein that is present at telomeres throughout the cell cycle. It is also known as TERF2, TRF2, and TRBF2, and is encoded in humans by the ''TERF2'' gene. It is a component of the shelterin nucleoprotein ...
, and * WRNIP1.


References


Further reading

* * * * * * *


External links

* In
GeneCard


{{DEFAULTSORT:Werner Syndrome Atp-Dependent Helicase Genes on human chromosome 8